Processing Math: Done
Solution 2.1:7b
From Förberedande kurs i matematik 1
(Difference between revisions)
m (Lösning 2.1:7b moved to Solution 2.1:7b: Robot: moved page) |
|||
Line 1: | Line 1: | ||
- | { | + | The denominators |
- | < | + | <math>x-1</math> |
- | {{ | + | and |
+ | <math>x^{2}</math> | ||
+ | do not have a common denominator, so the lowest common denominator is | ||
+ | <math>x^{2}\left( x-1 \right)</math>. We treat all three terms so that they have a common denominator and then start simplifying: | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & x+\frac{1}{x-1}+\frac{1}{x^{2}}=x\centerdot \frac{x^{2}\left( x-1 \right)}{x^{2}\left( x-1 \right)}+\frac{1}{x-1}\centerdot \frac{x^{2}}{x^{2}}+\frac{1}{x^{2}}\centerdot \frac{x-1}{x-1} \\ | ||
+ | & =\frac{x^{3}\left( x-1 \right)+x^{2}+\left( x-1 \right)}{x^{2}\left( x-1 \right)}=\frac{x^{4}-x^{3}+x^{2}+x-1}{x^{2}\left( x-1 \right)} \\ | ||
+ | \end{align}</math> |
Revision as of 12:46, 16 September 2008
The denominators
x−1
x2
x−1
x2
x−1
+1x−1
x2x2+1x2
x−1x−1=x2
x−1
x3
x−1
+x2+
x−1
=x2
x−1
x4−x3+x2+x−1