Processing Math: Done
Solution 2.1:1d
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m  (Lösning 2.1:1d moved to Solution 2.1:1d: Robot: moved page)  | 
				m   | 
			||
| Line 1: | Line 1: | ||
| - | + | After <math> x^3y^2 </math> are multiplied inside the bracket, we can eliminate factors which occur in both the numerator and denominator,  | |
| - | After <math> x^3y^2 </math> are multiplied inside the bracket, we can eliminate factors which occur in both the numerator and denominator  | + | |
| - | <math>   | + | {{Displayed math||<math>\begin{align}  | 
| - | x^3y^2\Big( \frac   | + | x^3y^2\Big( \frac{1}{y} - \frac{1}{xy} +1 \Big) &= x^3y^2 \cdot\frac{1}{y} -x^3y^2 \cdot \frac{1}{xy} +x^3y^2\cdot 1 \\  | 
&=\frac{x^3y^2}{y} -\frac{x^3y^2}{xy} +x^3y^2 \\  | &=\frac{x^3y^2}{y} -\frac{x^3y^2}{xy} +x^3y^2 \\  | ||
| - | &=x^3y - x^2y +x^3y^2  | + | &=x^3y - x^2y +x^3y^2\,,  | 
| - | \end{align}</math>  | + | \end{align}</math>}}  | 
where we have used  | where we have used  | ||
| - | <math> \  | + | {{Displayed math||<math>\begin{align}  | 
| - | + | \frac{x^3y^2}{y} &= \frac{x^3\cdot y\cdot{}\rlap{/}y}{\rlap{/}y}= x^3y\,,\\[5pt]  | |
| - | + | \frac{x^3y^2}{xy} &= \frac{\rlap{/}x\cdot x\cdot x \cdot y \cdot {}\rlap{/}y}{\rlap{/}x\cdot {}\rlap{/}y} = x\cdot x\cdot y = x^2y\,\textrm{.}\end{align}</math>}}  | |
| - | + | ||
| - | + | ||
Current revision
After 
 y1−1xy+1 =x3y2 y1−x3y2 1xy+x3y2 1=yx3y2−xyx3y2+x3y2=x3y−x2y+x3y2![]()  | 
where we have used
 yx3 y![]()  y=x3y = x![]()  y x x x y![]()  y=x x y=x2y. | 





