Processing Math: Done
Solution 2.1:2b
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m  (Lösning 2.1:2b moved to Solution 2.1:2b: Robot: moved page)  | 
				m   | 
			||
| Line 1: | Line 1: | ||
| - | {{NAVCONTENT_START}}  | ||
| - | <!--center> [[Image:2_1_2b.gif]] </center-->  | ||
We expand the first product of bracketed terms by multiplying each term inside the first bracket by each term from the second bracket  | We expand the first product of bracketed terms by multiplying each term inside the first bracket by each term from the second bracket  | ||
| - | <math>  | + | {{Displayed math||<math>\begin{align}  | 
| - | + | ||
| - | \begin{align}  | + | |
(1-5x)(1+15x) &= 1\cdot 1+1\cdot 15x-5x\cdot 1-5x \cdot 15x\\  | (1-5x)(1+15x) &= 1\cdot 1+1\cdot 15x-5x\cdot 1-5x \cdot 15x\\  | ||
| - | &=1+15x-5x-75x^2  | + | &=1+15x-5x-75x^2\\  | 
| - | \end{align}  | + | &=1+10x-75x^2\,\textrm{.}  | 
| - | </math>  | + | \end{align}</math>}}  | 
| - | As for the second expression, we can use the conjugate rule <math>(a-b)(a+b)=a^2-b^2,</math> where <math>a=2</math> and <math> b=5x  | + | As for the second expression, we can use the conjugate rule <math>(a-b)(a+b)=a^2-b^2,</math> where <math>a=2</math> and <math> b=5x</math>,  | 
| - | <math>  | + | {{Displayed math||<math>\begin{align}  | 
| - | + | ||
| - | \begin{align}  | + | |
3(2-5x)(2+5x) &= 3\big( 2^2-(5x)^2\big)\\  | 3(2-5x)(2+5x) &= 3\big( 2^2-(5x)^2\big)\\  | ||
&=3(4-25x^2)\\  | &=3(4-25x^2)\\  | ||
| - | &=12-75x^2  | + | &=12-75x^2\,\textrm{.}  | 
| - | \end{align}  | + | \end{align}</math>}}  | 
| - | </math>  | + | |
All together, we obtain  | All together, we obtain  | ||
| - | <math> \  | + | {{Displayed math||<math>\begin{align}  | 
| - | + | (1-5x)(1+15x)-3(2-5x)(2+5x) &= (1+10x-75x^2)-(12-75x^2)\\  | |
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
&= 1+10x-75x^2-12+75x^2\\  | &= 1+10x-75x^2-12+75x^2\\  | ||
&= 1-12+10x-75x^2+75x^2\\  | &= 1-12+10x-75x^2+75x^2\\  | ||
| - | &=-11+10x  | + | &=-11+10x\,\textrm{.}  | 
| - | \end{align}  | + | \end{align}</math>}}  | 
| - | </math>  | + | |
| - | + | ||
| - | + | ||
Current revision
We expand the first product of bracketed terms by multiplying each term inside the first bracket by each term from the second bracket
 1+1 15x−5x 1−5x 15x=1+15x−5x−75x2=1+10x−75x2. | 
As for the second expression, we can use the conjugate rule 
 22−(5x)2 =3(4−25x2)=12−75x2. | 
All together, we obtain



