Processing Math: Done
Solution 3.3:3f
From Förberedande kurs i matematik 1
(Difference between revisions)
m (Lösning 3.3:3f moved to Solution 3.3:3f: Robot: moved page) |
|||
Line 1: | Line 1: | ||
- | {{ | + | If we write |
- | < | + | <math>\text{4}</math> |
- | {{ | + | and |
+ | <math>\text{16}</math> | ||
+ | as | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \text{4}=2\centerdot 2=2^{2} \\ | ||
+ | & 16=2\centerdot 8=2\centerdot 2\centerdot 4=2\centerdot 2\centerdot 2\centerdot 2=2^{4} \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | we obtain | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \log _{2}4+\log _{2}\frac{1}{16}=\log _{2}2^{2}+\log _{2}\frac{1}{2^{4}} \\ | ||
+ | & =\log _{2}2^{2}+\log _{2}2^{-4}=2\centerdot \log _{2}2+\left( -4 \right)\centerdot \log _{2}2 \\ | ||
+ | & =2\centerdot 1+\left( -4 \right)\centerdot 1=-2 \\ | ||
+ | \end{align}</math> |
Revision as of 14:28, 25 September 2008
If we write
2=2216=2
8=2
2
4=2
2
2
2=24
we obtain
log22+
−4
log22=2
1+
−4
1=−2