Solution 3.3:6a
From Förberedande kurs i matematik 1
m |
|||
Line 39: | Line 39: | ||
- | <math> | + | <math>\left[ 4 \right]\quad \left[ \text{LN} \right]\quad \left[ \div \right]\quad \left[ 3 \right]\quad \left[ \text{LN} \right]\quad \left[ = \right]</math> |
- | + | ||
- | + | ||
- | + |
Revision as of 09:25, 26 September 2008
The calculator does not have button for
If we go back to the definition of the logarithm, we see that
Now, take the natural logarithm of both sides,
Using the logarithm law,
\displaystyle \log _{3}4\centerdot \ln 3=\ln 4
Thus, after dividing by
\displaystyle \text{ln 3}, we have
\displaystyle \log _{3}4=\frac{\ln 4}{\ln 3}=\frac{1.386294...}{1.098612...}=1.2618595
which gives 1.262 as the rounded-off answer.
NOTE: on a calculator, the answer is obtained by pressing the buttons
\displaystyle \left[ 4 \right]\quad \left[ \text{LN} \right]\quad \left[ \div \right]\quad \left[ 3 \right]\quad \left[ \text{LN} \right]\quad \left[ = \right]