Processing Math: Done
Solution 4.1:2
From Förberedande kurs i matematik 1
(Difference between revisions)
m (Lösning 4.1:2 moved to Solution 4.1:2: Robot: moved page) |
|||
Line 1: | Line 1: | ||
- | {{ | + | If we use the mnemonic that one turn is |
- | < | + | <math>360^{\circ }</math> |
- | {{ | + | or |
+ | <math>\text{2}\pi </math> | ||
+ | radians, we can derive a formula for the transformation from degrees to radians. Because | ||
+ | |||
+ | |||
+ | <math>360^{\circ }\centerdot 1^{\circ }=2\pi </math> | ||
+ | radians | ||
+ | |||
+ | this gives | ||
+ | |||
+ | |||
+ | <math>1^{\circ }=\frac{2\pi }{360}</math> | ||
+ | radians | ||
+ | <math>=\frac{\pi }{180}</math> | ||
+ | radians | ||
+ | |||
+ | Now we can start transforming the angles: | ||
+ | |||
+ | a) | ||
+ | <math>45^{\circ }=45\centerdot 1^{\circ }=45\centerdot \frac{\pi }{180}</math> | ||
+ | radians | ||
+ | <math>=\frac{\pi }{4}</math> | ||
+ | radians | ||
+ | |||
+ | b) | ||
+ | <math>135^{\circ }=135\centerdot 1^{\circ }=135\centerdot \frac{\pi }{180}</math> | ||
+ | radians | ||
+ | <math>=\frac{3\pi }{4}</math> | ||
+ | radians | ||
+ | |||
+ | c) | ||
+ | <math>-63^{\circ }=-63\centerdot 1^{\circ }=-63\centerdot \frac{\pi }{180}</math> | ||
+ | radians | ||
+ | <math>=-\frac{7\pi }{20}</math> | ||
+ | radians | ||
+ | |||
+ | d) | ||
+ | <math>270^{\circ }=270\centerdot 1^{\circ }=270\centerdot \frac{\pi }{180}</math> | ||
+ | radians | ||
+ | <math>=\frac{3\pi }{2}</math> | ||
+ | radians |
Revision as of 09:17, 27 September 2008
If we use the mnemonic that one turn is
1
=2
this gives
=2
360
180
Now we can start transforming the angles:
a)
=45
1
=45
180
4
b)
=135
1
=135
180
c)
=−63
1
=−63
180
d)
=270
1
=270
180