Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Solution 4.1:6c

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
m (Lösning 4.1:6c moved to Solution 4.1:6c: Robot: moved page)
Current revision (11:45, 27 September 2008) (edit) (undo)
 
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
What we need to do is to rewrite the equation in the standard form
-
<center> [[Image:4_1_6c-1(2).gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
 
 +
<math>\left( x-a \right)^{2}+\left( y-b \right)^{2}=r^{2}</math>
 +
 
 +
 
 +
because then we can read off the circle's centre
 +
<math>\left( a \right.,\left. b \right)</math>
 +
and radius,
 +
<math>r</math>.
 +
 
 +
In our case, we need only take out the factor
 +
<math>~\text{3}</math>
 +
from the brackets on the left-hand side
 +
 
 +
 
 +
<math>\begin{align}
 +
& \left( 3x-1 \right)^{2}+\left( 3y+7 \right)^{2}=3^{2}\left( x-\frac{1}{3} \right)^{2}+3^{2}\left( y+\frac{7}{3} \right)^{2} \\
 +
& =9\left( x-\frac{1}{3} \right)^{2}+9\left( y+\frac{7}{3} \right)^{2} \\
 +
\end{align}</math>
 +
 
 +
 
 +
and then divide both sides by
 +
<math>\text{9}</math>
 +
, so as to get the equation in the desired form:
 +
 
 +
 
 +
<math>\left( x-\frac{1}{3} \right)^{2}+\left( y+\frac{7}{3} \right)^{2}=\frac{10}{9}</math>
 +
 
 +
Because the right-hand side can be written as
 +
<math>\left( \sqrt{\frac{10}{9}} \right)^{2}</math>
 +
and the term
 +
<math>\left( y+\frac{7}{3} \right)^{2}</math>
 +
as
 +
<math></math>
 +
 
 +
<math>\left( y-\left( -\frac{7}{3} \right) \right)^{2}</math>, the equation describes a circle with its centre at
 +
<math>\left( \frac{1}{3} \right.,\left. -\frac{7}{3} \right)</math>
 +
and radius
 +
<math>\sqrt{\frac{10}{9}}=\frac{\sqrt{10}}{3}</math>
 +
 
{{NAVCONTENT_START}}
{{NAVCONTENT_START}}
<center> [[Image:4_1_6c-2(2).gif]] </center>
<center> [[Image:4_1_6c-2(2).gif]] </center>
{{NAVCONTENT_STOP}}
{{NAVCONTENT_STOP}}

Current revision

What we need to do is to rewrite the equation in the standard form


xa2+yb2=r2 


because then we can read off the circle's centre ab  and radius, r.

In our case, we need only take out the factor  3 from the brackets on the left-hand side


3x12+3y+72=32x312+32y+372=9x312+9y+372


and then divide both sides by 9 , so as to get the equation in the desired form:


x312+y+372=910 

Because the right-hand side can be written as 9102  and the term y+372  as

y372 , the equation describes a circle with its centre at 3137  and radius 910=310