Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Solution 4.2:4b

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
m (Lösning 4.2:4b moved to Solution 4.2:4b: Robot: moved page)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
We start by subtracting
-
<center> [[Image:4_2_4b-1(2).gif]] </center>
+
<math>2\pi </math>
-
{{NAVCONTENT_STOP}}
+
from
-
{{NAVCONTENT_START}}
+
<math>\frac{11\pi }{3}</math>, so that we get an angle between
-
<center> [[Image:4_2_4b-2(2).gif]] </center>
+
<math>o</math>
-
{{NAVCONTENT_STOP}}
+
and
 +
<math>2\pi </math>. This doesn't change the cosine value
 +
 
 +
 
 +
<math>\cos \frac{11\pi }{3}=\cos \left( \frac{11\pi }{3}-2\pi \right)=\cos \frac{5\pi }{3}</math>
 +
 
 +
 
 +
Then, by rewriting
 +
<math>\frac{5\pi }{3}</math>
 +
as a sum of
 +
<math>\pi </math>
 +
- and
 +
<math>\frac{\pi }{2}</math>
 +
-terms
 +
 
 +
 
 +
<math>\frac{5\pi }{3}=\frac{3\pi +\frac{3}{2}\pi +\frac{1}{2}\pi }{3}=\pi +\frac{\pi }{2}+\frac{\pi }{6}</math>
 +
 
 +
we see that
 +
<math>\frac{5\pi }{3}</math>
 +
is an angle in the fourth quadrant which makes an angle
 +
<math>\frac{\pi }{6}</math>
 +
with the negative
 +
<math>y</math>
 +
-axis.
 +
 
 +
 
[[Image:4_2_4b1.gif]]
[[Image:4_2_4b1.gif]]
 +
 +
With the help of a triangle and a little trigonometry, we can determine the coordinates for the point on a unit circle which corresponds to the angle
 +
<math>\frac{5\pi }{3}</math> .
 +
 +
[[Image:4_2_4_b2.gif]]
[[Image:4_2_4_b2.gif]]
 +
 +
The point has coordinates
 +
<math>\left( \frac{1}{2} \right.,\left. -\frac{\sqrt{3}}{2} \right)</math>
 +
and
 +
<math>\cos \frac{11\pi }{3}=\cos \frac{5\pi }{3}=\frac{1}{2}</math>.

Revision as of 13:05, 28 September 2008

We start by subtracting 2 from 311, so that we get an angle between o and 2. This doesn't change the cosine value


cos311=cos3112=cos35 


Then, by rewriting 35 as a sum of - and 2 -terms


35=33+23+21=+2+6

we see that 35 is an angle in the fourth quadrant which makes an angle 6 with the negative y -axis.


Image:4_2_4b1.gif

With the help of a triangle and a little trigonometry, we can determine the coordinates for the point on a unit circle which corresponds to the angle 35 .


Image:4_2_4_b2.gif

The point has coordinates 2123  and cos311=cos35=21.