Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath

Solution 4.2:5b

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
m (Lösning 4.2:5b moved to Solution 4.2:5b: Robot: moved page)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
If we draw the angle
-
<center> [[Image:4_2_5b.gif]] </center>
+
<math>\text{225}^{\circ }\text{ }=\text{ 18}0^{\circ }\text{ }+\text{ 45}^{\circ }</math>
-
{{NAVCONTENT_STOP}}
+
on a unit circle, we see that it makes an angle of
 +
<math>\text{45}^{\circ }</math>
 +
with the negative
 +
<math>x</math>
 +
-axis.
 +
 
[[Image:4_2_5_b1.gif|center]]
[[Image:4_2_5_b1.gif|center]]
 +
 +
This means that
 +
<math>\text{tan 225}^{\circ }</math>, which is the gradient of the line that makes an angle of
 +
<math>\text{45}^{\circ }</math>
 +
with the positive
 +
<math>x</math>
 +
-axis, equals
 +
<math>\text{tan 225}^{\circ }</math>, because the line which makes an angle of
 +
<math>\text{45}^{\circ }</math>
 +
has the same slope:
 +
 +
 +
<math>\tan 225^{\circ }\text{ }=\tan \text{45}^{\circ }=\frac{\sin \text{45}^{\circ }}{\cos \text{45}^{\circ }}=\frac{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}=1</math>
 +
 +
 +
[[Image:4_2_5_b2.gif|center]]
[[Image:4_2_5_b2.gif|center]]

Revision as of 08:04, 29 September 2008

If we draw the angle 225 = 180 + 45 on a unit circle, we see that it makes an angle of 45 with the negative x -axis.

This means that tan 225, which is the gradient of the line that makes an angle of 45 with the positive x -axis, equals tan 225, because the line which makes an angle of 45 has the same slope:


tan225 =tan45=sin45cos45=1212=1