Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Solution 4.2:5d

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
m (Lösning 4.2:5d moved to Solution 4.2:5d: Robot: moved page)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
By subtracting
-
<center> [[Image:4_2_5d.gif]] </center>
+
<math>360^{\circ }</math>
-
{{NAVCONTENT_STOP}}
+
from
 +
<math>\text{495}^{\circ }</math>, we do not change the value of the tangent:
 +
 
 +
 
 +
<math>\tan \text{495}^{\circ }=\tan \left( \text{495}^{\circ }-360^{\circ } \right)=\tan \text{135}^{\circ }</math>
 +
 
 +
We know from exercise a that
 +
<math>\cos 135^{\circ }=-\frac{1}{\sqrt{2}}</math>
 +
and
 +
<math>\sin 135^{\circ }=\frac{1}{\sqrt{2}}</math>, which gives
 +
 
 +
 
 +
<math>\tan 135^{\circ }=\frac{\sin 135^{\circ }}{\cos 135^{\circ }}=\frac{\frac{1}{\sqrt{2}}}{-\frac{1}{\sqrt{2}}}=-1</math>

Revision as of 08:16, 29 September 2008

By subtracting 360 from 495, we do not change the value of the tangent:


tan495=tan495360=tan135 

We know from exercise a that cos135=12 and sin135=12, which gives


tan135=sin135cos135=1212=1