Processing Math: Done
Solution 4.2:6
From Förberedande kurs i matematik 1
(Difference between revisions)
m (Lösning 4.2:6 moved to Solution 4.2:6: Robot: moved page) |
|||
Line 1: | Line 1: | ||
- | { | + | We can work out the length we are looking for by taking the difference |
- | < | + | <math>a-b\text{ }</math> |
- | + | of the sides | |
+ | <math>a</math> | ||
+ | and | ||
+ | <math>b</math> | ||
+ | in the triangles below: | ||
+ | |||
[[Image:4_2_6_13.gif|center]] | [[Image:4_2_6_13.gif|center]] | ||
[[Image:4_2_6_2.gif|center]] | [[Image:4_2_6_2.gif|center]] | ||
+ | |||
+ | If we take the tangent of the given angle in each triangle, we easily obtain | ||
+ | <math>a</math> | ||
+ | and | ||
+ | <math>b</math>: | ||
+ | |||
+ | |||
[[Image:4_2_6_13.gif|center]] | [[Image:4_2_6_13.gif|center]] | ||
[[Image:4_2_6_4.gif|center]] | [[Image:4_2_6_4.gif|center]] | ||
+ | |||
+ | <math>a=1\centerdot \tan 60^{\circ }=\frac{\sin 60^{\circ }}{\cos 60^{\circ }}=\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}}=\sqrt{3}</math> |
Revision as of 08:29, 29 September 2008
We can work out the length we are looking for by taking the difference
If we take the tangent of the given angle in each triangle, we easily obtain
tan60
=sin60
cos60
=212
3=
3