Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath

Solution 4.2:8

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
m (Lösning 4.2:8 moved to Solution 4.2:8: Robot: moved page)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
We start by drawing three auxiliary triangles, and calling the three vertical sides
-
<center> [[Image:4_2_8-1(2).gif]] </center>
+
<math>x,\ y</math>
-
{{NAVCONTENT_STOP}}
+
and
-
{{NAVCONTENT_START}}
+
<math>z</math>, as shown in the figure.
-
<center> [[Image:4_2_8-2(2).gif]] </center>
+
-
{{NAVCONTENT_STOP}}
+
[[Image:4_2_8.gif|center]]
[[Image:4_2_8.gif|center]]
 +
 +
Using the definition of cosine, we can work out
 +
<math>x\text{ }</math>
 +
and
 +
<math>y</math>
 +
from
 +
 +
 +
<math>x=a\cos \alpha </math>
 +
 +
 +
<math>y=b\cos \beta </math>
 +
 +
and, for the same reason, we know that
 +
<math>z\text{ }</math>
 +
satisfies the relation
 +
 +
 +
<math>z=l\cos \gamma </math>
 +
 +
 +
In addition, we know that the lengths
 +
<math>x,\ y</math>
 +
and
 +
<math>z</math>
 +
satisfy the equality
 +
 +
 +
<math>z=x-y</math>
 +
 +
 +
If we substitute in the expressions for
 +
<math>x,\ y</math>
 +
and
 +
<math>z</math>, we obtain the trigonometric equation
 +
 +
 +
<math>l\cos \gamma =a\cos \alpha -b\cos \beta </math>
 +
 +
 +
where
 +
<math>\gamma </math>
 +
is the only unknown.

Revision as of 09:40, 29 September 2008

We start by drawing three auxiliary triangles, and calling the three vertical sides x y and z, as shown in the figure.


Using the definition of cosine, we can work out x and y from


x=acos


y=bcos

and, for the same reason, we know that z satisfies the relation


z=lcos


In addition, we know that the lengths x y and z satisfy the equality


z=xy


If we substitute in the expressions for x y and z, we obtain the trigonometric equation


lcos=acosbcos


where is the only unknown.