Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Solution 4.2:9

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
m (Lösning 4.2:9 moved to Solution 4.2:9: Robot: moved page)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
If we introduce the dashed triangle below, the distance as the crow flies between
-
<center> [[Image:4_2_9-1(3).gif]] </center>
+
<math>\text{A}</math>
-
{{NAVCONTENT_STOP}}
+
and
-
{{NAVCONTENT_START}}
+
<math>\text{B}</math>
-
<center> [[Image:4_2_9-2(3).gif]] </center>
+
is equal to the triangle's hypotenuse,
-
{{NAVCONTENT_STOP}}
+
<math>c</math>.
-
{{NAVCONTENT_START}}
+
-
<center> [[Image:4_2_9-3(3).gif]] </center>
+
-
{{NAVCONTENT_STOP}}
+
[[Image:4_2_9_1.gif|center]]
[[Image:4_2_9_1.gif|center]]
 +
 +
One way to determine the hypotenuse is to know the triangle's opposite and adjacent sides, since Pythagoras' theorem then gives
 +
 +
 +
<math>c^{2}=a^{2}+b^{2}</math>
 +
 +
 +
In turn, we can determine the opposite and adjacent by introducing another triangle
 +
<math>\text{APR}</math>, where
 +
<math>\text{R}</math>
 +
is the point on the line
 +
<math>\text{PQ}</math>
 +
which the dashed triangle's side of length
 +
<math>a</math>
 +
cuts the line.
 +
[[Image:4_2_9_2.gif|center]]
[[Image:4_2_9_2.gif|center]]
 +
 +
Because we know that
 +
<math>\text{AP}=\text{4}</math>
 +
and the angle at P, simple trigonometry shows that
 +
<math>x</math>
 +
and
 +
<math>y</math>
 +
are given by
 +
 +
 +
<math>\begin{align}
 +
& x=4\sin 30^{\circ }=4\centerdot \frac{1}{2}=2, \\
 +
& y=4\cos 30^{\circ }=4\centerdot \frac{\sqrt{3}}{2}=2\sqrt{3} \\
 +
\end{align}</math>
 +
 +
 +
We can now start to look for the solution. Since
 +
<math>x</math>
 +
and
 +
<math>y</math>
 +
have been calculated, we can determine
 +
<math>a</math>
 +
and b by considering the horizontal and vertical distances in the figure.
 +
 +
[[Image:4_2_9_3.gif|center]]
[[Image:4_2_9_3.gif|center]]
 +
 +
<math>a=x+5=2+5=7</math>
 +
 +
<math>b=12-y=12-2\sqrt{3}</math>
 +
 +
 +
With a and
 +
<math>b</math>
 +
given, Pythagoras' theorem leads to
 +
 +
 +
<math>\begin{align}
 +
& c=\sqrt{a^{2}+b^{2}}=\sqrt{7^{2}+\left( 12-2\sqrt{3} \right)^{2}} \\
 +
& =\sqrt{49+\left( 12^{2}-2\centerdot 12\centerdot 2\sqrt{3}+\left( 2\sqrt{3} \right)^{2} \right)} \\
 +
& =\sqrt{205-38\sqrt{3}}\quad \approx \quad 11.0\quad \text{km}\text{.} \\
 +
\end{align}</math>

Revision as of 09:58, 29 September 2008

If we introduce the dashed triangle below, the distance as the crow flies between A and B is equal to the triangle's hypotenuse, c.


One way to determine the hypotenuse is to know the triangle's opposite and adjacent sides, since Pythagoras' theorem then gives


c2=a2+b2


In turn, we can determine the opposite and adjacent by introducing another triangle APR, where R is the point on the line PQ which the dashed triangle's side of length a cuts the line.

Because we know that AP=4 and the angle at P, simple trigonometry shows that x and y are given by


x=4sin30=421=2y=4cos30=423=23


We can now start to look for the solution. Since x and y have been calculated, we can determine a and b by considering the horizontal and vertical distances in the figure.


a=x+5=2+5=7

b=12y=1223 


With a and b given, Pythagoras' theorem leads to


c=a2+b2=72+12232=49+12221223+232=205383110km.