Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath

Solution 4.3:7a

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
m (Lösning 4.3:7a moved to Solution 4.3:7a: Robot: moved page)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
We can write the expression
-
<center> [[Image:4_3_7a.gif]] </center>
+
<math>\text{sin}\left( x+y \right)</math>
-
{{NAVCONTENT_STOP}}
+
in terms of
 +
<math>\text{sin }x</math>,
 +
<math>\text{cos }x</math>,
 +
<math>\text{sin }y</math>
 +
and
 +
<math>\text{cos }y</math>
 +
if we use the addition formula for sine,
 +
 
 +
 
 +
<math>\text{sin}\left( x+y \right)=\sin x\centerdot \cos y+\cos x\centerdot \sin y</math>
 +
 
 +
 
 +
In turn, it is possible to express the factors
 +
<math>\text{cos }x</math>
 +
and
 +
<math>\text{cos }y</math>
 +
in terms of
 +
<math>\text{sin }x</math>
 +
and
 +
<math>\text{sin }y</math>
 +
by using the Pythagorean identity,
 +
 
 +
 
 +
<math>\begin{align}
 +
& \cos x=\pm \sqrt{1-\text{sin}^{2}x}=\pm \sqrt{1-\left( {2}/{3}\; \right)^{2}}=\pm \frac{\sqrt{5}}{3} \\
 +
& \cos y=\pm \sqrt{1-\text{sin}^{2}y}=\pm \sqrt{1-\left( {1}/{3}\; \right)^{2}}=\pm \frac{2\sqrt{2}}{3} \\
 +
\end{align}</math>
 +
 
 +
 
 +
 
 +
Because
 +
<math>x</math>
 +
and
 +
<math>y</math>
 +
are angles in the first quadrant,
 +
<math>\text{cos }x</math>
 +
and
 +
<math>\text{cos }y</math>
 +
are positive, so we in fact have
 +
 
 +
 
 +
<math>\cos x=\frac{\sqrt{5}}{3}</math>
 +
and
 +
<math>\cos y=\frac{2\sqrt{2}}{3}</math>
 +
 
 +
 +
Finally, we obtain
 +
 
 +
 
 +
<math>\sin \left( x+y \right)=\frac{2}{3}\centerdot \frac{2\sqrt{2}}{3}+\frac{\sqrt{5}}{3}\centerdot \frac{1}{3}=\frac{4\sqrt{2}+\sqrt{5}}{9}</math>

Revision as of 10:14, 30 September 2008

We can write the expression sinx+y  in terms of sin x, cos x, sin y and cos y if we use the addition formula for sine,


sinx+y=sinxcosy+cosxsiny 


In turn, it is possible to express the factors cos x and cos y in terms of sin x and sin y by using the Pythagorean identity,


cosx=1sin2x=1232=35cosy=1sin2y=1132=322


Because x and y are angles in the first quadrant, cos x and cos y are positive, so we in fact have


cosx=35  and cosy=322 


Finally, we obtain


sinx+y=32322+3531=942+5