Solution 4.4:1g
From Förberedande kurs i matematik 1
m (Lösning 4.4:1g moved to Solution 4.4:1g: Robot: moved page) |
|||
Line 1: | Line 1: | ||
- | + | A quick sketch of the unit circle and the line | |
- | < | + | <math>y=-\frac{1}{\sqrt{3}}x</math>, which corresponds to the tangent value |
- | { | + | <math>-{1}/{\sqrt{3}}\;</math> |
- | {{ | + | shows that there are two angles which satisfy |
- | < | + | <math>\tan v=-{1}/{\sqrt{3}}\;</math>. One of the angles lies in the fourth quadrant and the other is the opposite angle in the second quadrant. |
- | {{ | + | |
- | + | ||
[[Image:4_4_1_g1.gif|center]] | [[Image:4_4_1_g1.gif|center]] | ||
+ | |||
+ | We can therefore limit ourselves to the fourth quadrant and draw an auxiliary triangle in order to determine the angle there. | ||
[[Image:4_4_1_g2.gif|center]] | [[Image:4_4_1_g2.gif|center]] | ||
+ | |||
+ | If we call | ||
+ | <math>x</math> | ||
+ | the side adjacent to the angle | ||
+ | <math>\alpha </math> | ||
+ | then the fact that | ||
+ | <math>\tan v=-{1}/{\sqrt{3}}\;</math> | ||
+ | gives the length of the opposite side as | ||
+ | <math>{x}/{\sqrt{3}}\;</math>. | ||
+ | |||
[[Image:4_4_1_g3.gif|center]] | [[Image:4_4_1_g3.gif|center]] | ||
+ | |||
+ | Pythagoras' theorem gives | ||
+ | |||
+ | |||
+ | <math>x^{2}+\left( \frac{x}{\sqrt{3}} \right)^{2}=1^{2}</math> | ||
+ | |||
+ | |||
+ | and this equation has the solution | ||
+ | <math>x={\sqrt{3}}/{2}\;</math>, which means that | ||
+ | |||
+ | |||
+ | <math>\cos \alpha =\frac{{\sqrt{3}}/{2}\;}{1}=\frac{\sqrt{3}}{2}</math> | ||
+ | |||
+ | i.e. | ||
+ | <math>\alpha ={\pi }/{6}\;</math>. Because the angle | ||
+ | <math>v</math> | ||
+ | in the fourth quadrant is the complement of | ||
+ | <math>\alpha </math> | ||
+ | |||
+ | <math>v</math> | ||
+ | is given by | ||
+ | |||
+ | |||
+ | <math>v=2\pi -\alpha =2\pi -\frac{\pi }{6}=\frac{11\pi }{6}</math>. | ||
+ | If we subtract half a turn, | ||
+ | <math>\pi </math>, we obtain the other angle | ||
+ | |||
+ | |||
+ | <math>v=\frac{11\pi }{6}-\pi =\frac{5\pi }{6}</math> |
Revision as of 13:00, 30 September 2008
A quick sketch of the unit circle and the line
3x
3
3
We can therefore limit ourselves to the fourth quadrant and draw an auxiliary triangle in order to determine the angle there.
If we call
3
3
Pythagoras' theorem gives
x
3
2=12
and this equation has the solution
3
2
=1
3
2=2
3
i.e.
=
6
−
=2
−
6=611
−
=65