Processing Math: Done
Solution 3.3:3h
From Förberedande kurs i matematik 1
(Difference between revisions)
m |
|||
Line 1: | Line 1: | ||
- | Because | + | Because <math>a^{2}\sqrt{a} = a^{2}a^{1/2} = a^{2+1/2} = a^{5/2}</math>, the logarithm law, <math>b\lg a = \lg a^b</math>, gives that |
- | <math>a^{2}\sqrt{a}=a^{2}a^ | + | |
- | <math>b\lg a=\lg a^ | + | |
+ | {{Displayed math||<math>\log_{a} \bigl(a^{2}\sqrt{a}\,\bigr) = \log_{a}a^{5/2} = \frac{5}{2}\cdot\log_{a}a = \frac{5}{2}\cdot 1 = \frac{5}{2}\,,</math>}} | ||
- | <math>\ | + | where we have used that <math>\log_{a}a = 1\,</math>. |
- | + | Note: In this exercise, we assume, implicitly, that <math>a > 0</math> and <math>a\ne 1\,</math>. | |
- | + | ||
- | + | ||
- | + | ||
- | <math> | + | |
- | and | + | |
- | <math> | + |
Current revision
Because a=a2a1
2=a2+1
2=a5
2
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
where we have used that
Note: In this exercise, we assume, implicitly, that 0
=1