Processing Math: Done
Solution 4.2:6
From Förberedande kurs i matematik 1
(Difference between revisions)
m |
|||
Line 1: | Line 1: | ||
- | We can work out the length we are looking for by taking the difference | + | We can work out the length we are looking for by taking the difference <math>a-b</math> of the sides <math>a</math> and <math>b</math> in the triangles below. |
- | <math>a-b | + | |
- | of the sides | + | |
- | <math>a</math> | + | |
- | and | + | |
- | <math>b</math> | + | |
- | in the triangles below | + | |
- | [[Image:4_2_6_13.gif|center]] | + | [[Image:4_2_6_13.gif|center]][[Image:4_2_6_2.gif|center]] |
- | [[Image:4_2_6_2.gif|center]] | + | |
- | If we take the tangent of the given angle in each triangle, we easily obtain | + | If we take the tangent of the given angle in each triangle, we easily obtain <math>a</math> and <math>b</math>. |
- | <math>a</math> | + | |
- | and | + | |
- | <math>b</math> | + | |
+ | {| width="100%" | ||
+ | ||[[Image:4_2_6_13.gif]] | ||
+ | ||<math>a = 1\cdot\tan 60^{\circ} = \frac{\sin 60^{\circ}}{\cos 60^{\circ}} = \frac{\dfrac{\sqrt{3}}{2}}{\dfrac{1}{2}} = \sqrt{3}</math> | ||
+ | |- | ||
+ | ||[[Image:4_2_6_4.gif]] | ||
+ | ||<math>b = 1\cdot\tan 45^{\circ} = \frac{\sin 45^{\circ}}{\cos 45^{\circ}} = \frac{\dfrac{1}{\sqrt{2}}}{\dfrac{1}{\sqrt{2}}} = 1</math> | ||
+ | |} | ||
- | + | Hence, | |
- | + | ||
- | <math>a= | + | {{Displayed math||<math>x = a-b = \sqrt{3}-1\,\textrm{.}</math>}} |
Current revision
We can work out the length we are looking for by taking the difference
If we take the tangent of the given angle in each triangle, we easily obtain
![]() | ![]() ![]() ![]() ![]() ![]() ![]() |
![]() | ![]() ![]() ![]() ![]() ![]() ![]() |
Hence,
![]() |