Solution 4.3:8a

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
Current revision (08:16, 10 October 2008) (edit) (undo)
m
 
Line 1: Line 1:
-
+
We rewrite <math>\tan v</math> on the left-hand side as <math>\frac{\sin v}{\cos v}</math>, so that
-
 
+
-
We rewrite
+
-
<math>\text{tan }v</math>
+
-
on the left-hand side as
+
-
<math>\frac{\sin v}{\cos v}</math>, so that
+
-
 
+
-
 
+
-
<math>\tan ^{2}v=\frac{\sin ^{2}v}{\cos ^{2}v}</math>
+
 +
{{Displayed math||<math>\tan^2\!v = \frac{\sin^2\!v}{\cos^2\!v}\,\textrm{.}</math>}}
If we then use the Pythagorean identity
If we then use the Pythagorean identity
 +
{{Displayed math||<math>\cos^2\!v + \sin^2\!v = 1</math>}}
-
<math>\cos ^{2}v+\sin ^{2}v=1</math>
+
and rewrite <math>\cos^2\!v</math> in the denominator as <math>1 - \sin^2\!v</math>, we get what we are looking for on the right-hand side. The whole calculation is
-
 
+
-
 
+
-
and rewrite
+
-
<math>\text{cos}^{\text{2}}v</math>
+
-
in the denominator as
+
-
<math>\text{1}-\text{sin}^{\text{2}}v\text{ }</math>, we get what we are looking for on the right-hand side. The whole calculation is
+
-
 
+
-
<math>\tan ^{2}v=\frac{\sin ^{2}v}{\cos ^{2}v}=\frac{\sin ^{2}v}{1-\sin ^{2}v}</math>
+
{{Displayed math||<math>\tan^2\!v = \frac{\sin^2\!v}{\cos^2\!v} = \frac{\sin^2\!v}{1-\sin^2\!v}\,\textrm{.}</math>}}

Current revision

We rewrite \displaystyle \tan v on the left-hand side as \displaystyle \frac{\sin v}{\cos v}, so that

\displaystyle \tan^2\!v = \frac{\sin^2\!v}{\cos^2\!v}\,\textrm{.}

If we then use the Pythagorean identity

\displaystyle \cos^2\!v + \sin^2\!v = 1

and rewrite \displaystyle \cos^2\!v in the denominator as \displaystyle 1 - \sin^2\!v, we get what we are looking for on the right-hand side. The whole calculation is

\displaystyle \tan^2\!v = \frac{\sin^2\!v}{\cos^2\!v} = \frac{\sin^2\!v}{1-\sin^2\!v}\,\textrm{.}