Processing Math: Done
Solution 4.3:6b
From Förberedande kurs i matematik 1
(Difference between revisions)
m (Lösning 4.3:6b moved to Solution 4.3:6b: Robot: moved page) |
|||
Line 1: | Line 1: | ||
- | + | We draw an angle | |
- | < | + | <math>v</math> |
- | {{ | + | in the unit circle, and the fact that |
- | { | + | <math>\text{sin }v\text{ }=\frac{3}{10}</math> |
- | < | + | means that its |
- | {{ | + | <math>y</math> |
+ | -coordinate equals | ||
+ | <math>\frac{3}{10}</math>. | ||
[[Image:4_3_6_b1.gif|center]] | [[Image:4_3_6_b1.gif|center]] | ||
+ | |||
+ | With the information that is given, we can define a right-angled triangle in the second quadrant which has a hypotenuse of | ||
+ | <math>\text{1}</math> | ||
+ | and a vertical side of length | ||
+ | <math>\frac{3}{10}</math>. | ||
+ | |||
+ | |||
[[Image:4_3_6_b2.gif|center]] | [[Image:4_3_6_b2.gif|center]] | ||
+ | |||
+ | We can determine the triangle's remaining side by using Pythagoras' theorem, | ||
+ | |||
+ | |||
+ | <math>a^{2}+\left( \frac{3}{10} \right)^{2}=1^{2}</math> | ||
+ | |||
+ | |||
+ | which gives that | ||
+ | |||
+ | |||
+ | <math>a=\sqrt{1-\left( \frac{3}{10} \right)^{2}}=\sqrt{1-\frac{9}{100}}=\sqrt{\frac{91}{100}}=\frac{\sqrt{91}}{10}</math> | ||
+ | |||
+ | This means that the angle's | ||
+ | <math>x</math> | ||
+ | -coordinate is | ||
+ | <math>-a</math>, i.e. we have | ||
+ | |||
+ | |||
+ | <math>\cos v=-\frac{\sqrt{91}}{10}</math> | ||
+ | |||
+ | and thus | ||
+ | |||
+ | |||
+ | <math>\tan v=\frac{\sin v}{\cos v}=\frac{\frac{3}{10}}{-\frac{\sqrt{91}}{10}}=-\frac{3}{\sqrt{91}}</math> |
Revision as of 09:15, 10 October 2008
We draw an angle
With the information that is given, we can define a right-angled triangle in the second quadrant which has a hypotenuse of
We can determine the triangle's remaining side by using Pythagoras' theorem,
310
2=12
which gives that
1−
310
2=
1−9100=
91100=10
91
This means that the angle's
91
and thus
91=−3
91