Solution 4.3:9

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
Current revision (11:31, 10 October 2008) (edit) (undo)
m
 
Line 1: Line 1:
-
Using the formula for double angles on sin
+
Using the formula for double angles on <math>\sin 160^{\circ}</math> gives
-
<math>160^{\circ }</math>
+
-
gives
+
 +
{{Displayed math||<math>\sin 160^{\circ} = 2\cos 80^{\circ}\sin 80^{\circ}\,\textrm{.}</math>}}
-
<math>\sin 160^{\circ }=2\cos 80^{\circ }\sin 80^{\circ }</math>
+
On the right-hand side, we see that the factor <math>\cos 80^{\circ}</math> has appeared, and if we use the formula for double angles on the second factor (<math>\sin 80^{\circ}</math>),
 +
{{Displayed math||<math>2\cos 80^{\circ}\sin 80^{\circ} = 2\cos 80^{\circ}\cdot 2\cos 40^{\circ}\sin 40^{\circ}\,,</math>}}
-
On the right-hand side, we see that the factor
+
we obtain a further factor <math>\cos 40^{\circ}</math>. A final application of the formula for double angles on <math>\sin 40^{\circ }</math> gives us all three cosine factors,
-
<math>\cos 80^{\circ }</math>
+
-
has appeared, and if we use the formula for double angles on the second factor (
+
-
<math>\sin 80^{\circ }</math>
+
-
),
+
-
 
+
-
 
+
-
<math>2\cos 80^{\circ }\sin 80^{\circ }=2\cos 80^{\circ }\centerdot 2\cos 40^{\circ }\sin 40^{\circ }</math>
+
-
 
+
-
 
+
-
we obtain a further factor
+
-
<math>\cos 40^{\circ }</math>. A final application of the formula for double angles on
+
-
<math>\sin 40^{\circ }</math>
+
-
gives us all three cosine factors:
+
-
 
+
-
 
+
-
<math>2\cos 80^{\circ }\centerdot 2\cos 40^{\circ }\centerdot \sin 40^{\circ }=2\cos 80^{\circ }\centerdot 2\cos 40^{\circ }\centerdot 2\cos 20^{\circ }\sin 20^{\circ }</math>
+
 +
{{Displayed math||<math>2\cos 80^{\circ}\cdot 2\cos 40^{\circ}\cdot\sin 40^{\circ} = 2\cos 80^{\circ}\cdot 2\cos 40^{\circ}\cdot 2\cos 20^{\circ}\sin 20^{\circ}\,\textrm{·}</math>}}
We have thus succeeded in showing that
We have thus succeeded in showing that
-
 
+
{{Displayed math||<math>\sin 160^{\circ} = 8\cos 80^{\circ}\cdot \cos 40^{\circ}\cdot \cos 20^{\circ}\cdot\sin 20^{\circ}</math>}}
-
<math>\sin 160^{\circ }=8\cos 80^{\circ }\centerdot \cos 40^{\circ }\centerdot \cos 20^{\circ }\sin 20^{\circ }</math>
+
-
 
+
which can also be written as
which can also be written as
 +
{{Displayed math||<math>\cos 80^{\circ}\cdot\cos 40^{\circ}\cdot \cos 20^{\circ} = \frac{\sin 160^{\circ}}{8\sin 20^{\circ}}\,\textrm{.}</math>}}
-
<math>\cos 80^{\circ }\centerdot \cos 40^{\circ }\centerdot \cos 20^{\circ }=\frac{\sin 160^{\circ }}{8\sin 20^{\circ }}</math>
+
[[Image:4_3_9.gif||right]]
 +
If we draw the unit circle, we see that <math>160^{\circ}</math> makes an angle of
 +
<math>20^{\circ}</math> with the negative ''x''-axis, and therefore the angles
 +
<math>20^{\circ}</math> and <math>160^{\circ}</math> have the same ''y''-coordinate in the unit circle, i.e.
-
 
+
<center><math>\sin 20^{\circ} = \sin 160^{\circ}\,\textrm{.}</math></center>
-
If we draw the unit circle, we see that
+
-
<math>160^{\circ }</math>
+
-
makes an angle of
+
-
<math>20^{\circ }</math>
+
-
with the negative
+
-
<math>x</math>
+
-
-axis, and therefore the angles
+
-
<math>20^{\circ }</math>
+
-
and
+
-
<math>160^{\circ }</math>
+
-
have the same
+
-
<math>y</math>
+
-
-coordinate in the unit circle, i.e.
+
-
 
+
-
<math>\sin 20^{\circ }=\sin 160^{\circ }</math>.
+
-
 
+
-
 
+
-
[[Image:4_3_9.gif|center]]
+
This shows that
This shows that
-
 
+
<center><math>\cos 80^{\circ} \cos 40^{\circ} \cos 20^{\circ} = \frac{\sin 160^{\circ}}{8\sin 20^{\circ}} = \frac{1}{8}\,\textrm{.}</math></center>
-
<math>\cos 80^{\circ }\centerdot \cos 40^{\circ }\centerdot \cos 20^{\circ }=\frac{\sin 160^{\circ }}{8\sin 20^{\circ }}=\frac{1}{8}</math>
+

Current revision

Using the formula for double angles on \displaystyle \sin 160^{\circ} gives

\displaystyle \sin 160^{\circ} = 2\cos 80^{\circ}\sin 80^{\circ}\,\textrm{.}

On the right-hand side, we see that the factor \displaystyle \cos 80^{\circ} has appeared, and if we use the formula for double angles on the second factor (\displaystyle \sin 80^{\circ}),

\displaystyle 2\cos 80^{\circ}\sin 80^{\circ} = 2\cos 80^{\circ}\cdot 2\cos 40^{\circ}\sin 40^{\circ}\,,

we obtain a further factor \displaystyle \cos 40^{\circ}. A final application of the formula for double angles on \displaystyle \sin 40^{\circ } gives us all three cosine factors,

\displaystyle 2\cos 80^{\circ}\cdot 2\cos 40^{\circ}\cdot\sin 40^{\circ} = 2\cos 80^{\circ}\cdot 2\cos 40^{\circ}\cdot 2\cos 20^{\circ}\sin 20^{\circ}\,\textrm{·}

We have thus succeeded in showing that

\displaystyle \sin 160^{\circ} = 8\cos 80^{\circ}\cdot \cos 40^{\circ}\cdot \cos 20^{\circ}\cdot\sin 20^{\circ}

which can also be written as

\displaystyle \cos 80^{\circ}\cdot\cos 40^{\circ}\cdot \cos 20^{\circ} = \frac{\sin 160^{\circ}}{8\sin 20^{\circ}}\,\textrm{.}

If we draw the unit circle, we see that \displaystyle 160^{\circ} makes an angle of \displaystyle 20^{\circ} with the negative x-axis, and therefore the angles \displaystyle 20^{\circ} and \displaystyle 160^{\circ} have the same y-coordinate in the unit circle, i.e.

\displaystyle \sin 20^{\circ} = \sin 160^{\circ}\,\textrm{.}

This shows that

\displaystyle \cos 80^{\circ} \cos 40^{\circ} \cos 20^{\circ} = \frac{\sin 160^{\circ}}{8\sin 20^{\circ}} = \frac{1}{8}\,\textrm{.}