Solution 4.4:5c

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
Current revision (14:09, 13 October 2008) (edit) (undo)
m
 
Line 1: Line 1:
-
For a fixed value of
+
For a fixed value of ''u'', an equality of the form
-
<math>u</math>, an equality of the form
+
 +
{{Displayed math||<math>\cos u=\cos v</math>}}
-
<math>\cos u=\cos v</math>
+
is satisfied by two angles ''v'' in the unit circle,
-
 
+
-
 
+
-
is satisfied by two angles
+
-
<math>v</math>
+
-
in the unit circle:
+
-
 
+
-
 
+
-
<math>v=u</math>
+
-
and
+
-
<math>v=-u</math>
+
 +
{{Displayed math||<math>v=u\qquad\text{and}\qquad v=-u\,\textrm{.}</math>}}
[[Image:4_4_5_c.gif|center]]
[[Image:4_4_5_c.gif|center]]
-
This means that all angles
+
This means that all angles ''v'' which satisfy the equality are
-
<math>v</math>
+
-
which satisfy the equality are
+
 +
{{Displayed math||<math>v=u+2n\pi\qquad\text{and}\qquad v=-u+2n\pi\,,</math>}}
-
<math>v=u+2n\pi </math>
+
where ''n'' is an arbitrary integer.
-
and
+
-
<math>v=-u+2n\pi </math>
+
-
 
+
-
 
+
-
where
+
-
<math>n\text{ }</math>
+
-
is an arbitrary integer.
+
Therefore, the equation
Therefore, the equation
-
 
+
{{Displayed math||<math>\cos 5x=\cos (x+\pi/5)</math>}}
-
<math>\cos 5x=\cos \left( x+{\pi }/{5}\; \right)</math>
+
-
 
+
has the solutions
has the solutions
-
+
{{Displayed math||<math>\left\{\begin{align} 5x&=x+\frac{\pi}{5}+2n\pi\quad\text{or}\\[5pt] 5x &= -x-\frac{\pi}{5}+2n\pi\,\textrm{.}\end{align}\right.</math>}}
-
<math>5x=x+\frac{\pi }{5}+2n\pi </math>
+
-
or
+
-
 
+
-
<math>5x=-x-\frac{\pi }{5}+2n\pi </math>
+
-
If we collect
+
If we collect ''x'' onto one side, we end up with
-
<math>x\text{ }</math>
+
-
onto one side, we end up with
+
 +
{{Displayed math||<math>\left\{\begin{align}
 +
x &= \frac{\pi}{20} + \frac{n\pi}{2}\,,\\[5pt]
 +
x &= -\frac{\pi }{30}+\frac{n\pi}{3}\,,
 +
\end{align}\right.</math>}}
-
<math>\left\{ \begin{array}{*{35}l}
+
where ''n'' is an arbitrary integer.
-
x=\frac{\pi }{20}+\frac{1}{2}n\pi \\
+
-
x=-\frac{\pi }{30}+\frac{1}{3}n\pi \\
+
-
\end{array} \right.</math>
+
-
(
+
-
<math>n\text{ }</math>
+
-
an arbitrary integer).
+

Current revision

For a fixed value of u, an equality of the form

\displaystyle \cos u=\cos v

is satisfied by two angles v in the unit circle,

\displaystyle v=u\qquad\text{and}\qquad v=-u\,\textrm{.}

This means that all angles v which satisfy the equality are

\displaystyle v=u+2n\pi\qquad\text{and}\qquad v=-u+2n\pi\,,

where n is an arbitrary integer.

Therefore, the equation

\displaystyle \cos 5x=\cos (x+\pi/5)

has the solutions

\displaystyle \left\{\begin{align} 5x&=x+\frac{\pi}{5}+2n\pi\quad\text{or}\\[5pt] 5x &= -x-\frac{\pi}{5}+2n\pi\,\textrm{.}\end{align}\right.

If we collect x onto one side, we end up with

\displaystyle \left\{\begin{align}

x &= \frac{\pi}{20} + \frac{n\pi}{2}\,,\\[5pt] x &= -\frac{\pi }{30}+\frac{n\pi}{3}\,, \end{align}\right.

where n is an arbitrary integer.