Solution 4.4:7a

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
Current revision (07:32, 14 October 2008) (edit) (undo)
m
 
Line 1: Line 1:
-
If we examine the equation, we see that
+
If we examine the equation, we see that <math>x</math> only occurs as <math>\sin x</math> and it can therefore be appropriate to take an intermediary step and solve for <math>\sin x</math>, instead of trying to solve for <math>x</math> directly.
-
<math>x</math>
+
-
only occurs as
+
-
<math>\text{sin }x\text{ }</math>
+
-
and it can therefore be appropriate to take an intermediary step and solve for
+
-
<math>\text{sin }x</math>, instead of trying to solve for
+
-
<math>x</math>
+
-
directly.
+
-
If we write
+
If we write <math>t = \sin x</math> and treat <math>t</math> as a new unknown variable, the equation becomes
-
<math>t=\sin x</math>
+
-
and treat
+
-
<math>t</math>
+
-
as a new unknown variable, the equation becomes
+
 +
{{Displayed math||<math>2t^2 + t = 1</math>}}
-
<math>2t^{2}+t=1</math>
+
and it is expressed completely in terms of <math>t</math>. This is a normal quadratic equation; after dividing by 2, we complete the square on the left-hand side,
-
 
+
-
 
+
-
when it is expressed completely in terms of
+
-
<math>t</math>. This is a normal second-degree equation; after dividing by
+
-
<math>\text{2}</math>, we complete the square on the left-hand side,
+
-
 
+
-
 
+
-
<math>\begin{align}
+
-
& 2t^{2}+t-\frac{1}{2}=\left( t+\frac{1}{4} \right)^{2}-\left( \frac{1}{4} \right)^{2}-\frac{1}{2} \\
+
-
& =\left( t+\frac{1}{4} \right)^{2}-\frac{9}{16} \\
+
-
\end{align}</math>
+
 +
{{Displayed math||<math>\begin{align}
 +
t^2 + \frac{1}{2}t - \frac{1}{2}
 +
&= \Bigl(t+\frac{1}{4}\Bigr)^2 - \Bigl(\frac{1}{4}\Bigr)^2 - \frac{1}{2}\\[5pt]
 +
&= \Bigl(t+\frac{1}{4}\Bigr)^2 - \frac{9}{16}
 +
\end{align}</math>}}
and then obtain the equation
and then obtain the equation
 +
{{Displayed math||<math>\Bigl(t+\frac{1}{4}\Bigr)^2 = \frac{9}{16}</math>}}
-
<math>\left( t+\frac{1}{4} \right)^{2}=\frac{9}{16}</math>
+
which has the solutions <math>t=-\tfrac{1}{4}\pm \sqrt{\tfrac{9}{16}}=-\tfrac{1}{4}\pm \tfrac{3}{4}</math>, i.e.
-
 
+
-
 
+
-
which has the solutions
+
-
<math>t=-\frac{1}{4}\pm \sqrt{\frac{9}{16}}=-\frac{1}{4}\pm \frac{3}{4}</math>,
+
-
i.e.
+
-
<math>t=-\frac{1}{4}+\frac{3}{4}=\frac{1}{2}</math>
+
-
and
+
-
<math>t=-\frac{1}{4}-\frac{3}{4}=-1</math>
+
-
 
+
-
Because
+
{{Displayed math||<math>t = -\frac{1}{4}+\frac{3}{4} = \frac{1}{2}\qquad\text{and}\qquad t = -\frac{1}{4}-\frac{3}{4} = -1\,\textrm{.}</math>}}
-
<math>t=\sin x</math>, this means that the values of
+
-
<math>x</math>
+
-
that satisfy the equation in the exercise will necessarily satisfy one of the basic equations,
+
-
<math>\text{sin }x=\frac{1}{2}</math>
+
-
or
+
-
<math>\text{sin }x=-\text{1}.</math>
+
 +
Because <math>t=\sin x</math>, this means that the values of ''x'' that satisfy the equation in the exercise will necessarily satisfy one of the basic equations <math>\sin x = \tfrac{1}{2}</math> or <math>\sin x = -1\,</math>.
-
<math>\text{sin }x=\frac{1}{2}</math>: this equation has the solutions
 
-
<math>x={\pi }/{6}\;</math>
 
-
and
 
-
<math>x=\pi -{\pi }/{6}\;=5{\pi }/{6}\;</math>
 
-
in the unit circle and the general solution is
 
 +
<math>\sin x = \frac{1}{2}</math>:
-
<math>x=\frac{\pi }{6}+2n\pi </math>
+
This equation has the solutions <math>x = \pi/6</math> and <math>x = \pi - \pi/6 = 5\pi/6</math> in the unit circle and the general solution is
-
and
+
-
<math>x=\frac{5\pi }{6}+2n\pi </math>
+
 +
{{Displayed math||<math>x = \frac{\pi}{6}+2n\pi\qquad\text{and}\qquad x = \frac{5\pi}{6}+2n\pi\,,</math>}}
-
where
+
where ''n'' is an arbitrary integer.
-
<math>n\text{ }</math>
+
-
is an arbitrary integer.
+
-
<math>\text{sin }x=-\text{1}</math>: the equation has only one solution
+
<math>\sin x = -1</math>:
-
<math>x={3\pi }/{2}\;</math>
+
-
in the unit circle, and the general solution is therefore
+
 +
The equation has only one solution <math>x = 3\pi/2</math> in the unit circle, and the general solution is therefore
-
<math>x=\frac{3\pi }{2}+2n\pi </math>
+
{{Displayed math||<math>x = \frac{3\pi}{2} + 2n\pi\,,</math>}}
 +
where ''n'' is an arbitrary integer.
-
where
 
-
<math>n\text{ }</math>
 
-
is an arbitrary integer.
 
All of the solution to the equation are given by
All of the solution to the equation are given by
 +
{{Displayed math||<math>\left\{\begin{align}
 +
x &= \pi/6+2n\pi\,,\\[5pt]
 +
x &= 5\pi/6+2n\pi\,,\\[5pt]
 +
x &= 3\pi/2+2n\pi\,,
 +
\end{align}\right.</math>}}
-
<math>\left\{ \begin{array}{*{35}l}
+
where ''n'' is an arbitrary integer.
-
x={\pi }/{6}\;+2n\pi \\
+
-
x={5\pi }/{6}\;+2n\pi \\
+
-
x={3\pi }/{2}\;+2n\pi \\
+
-
\end{array} \right.</math>
+
-
(
+
-
<math>n\text{ }</math>
+
-
an arbitrary integer)
+

Current revision

If we examine the equation, we see that \displaystyle x only occurs as \displaystyle \sin x and it can therefore be appropriate to take an intermediary step and solve for \displaystyle \sin x, instead of trying to solve for \displaystyle x directly.

If we write \displaystyle t = \sin x and treat \displaystyle t as a new unknown variable, the equation becomes

\displaystyle 2t^2 + t = 1

and it is expressed completely in terms of \displaystyle t. This is a normal quadratic equation; after dividing by 2, we complete the square on the left-hand side,

\displaystyle \begin{align}

t^2 + \frac{1}{2}t - \frac{1}{2} &= \Bigl(t+\frac{1}{4}\Bigr)^2 - \Bigl(\frac{1}{4}\Bigr)^2 - \frac{1}{2}\\[5pt] &= \Bigl(t+\frac{1}{4}\Bigr)^2 - \frac{9}{16} \end{align}

and then obtain the equation

\displaystyle \Bigl(t+\frac{1}{4}\Bigr)^2 = \frac{9}{16}

which has the solutions \displaystyle t=-\tfrac{1}{4}\pm \sqrt{\tfrac{9}{16}}=-\tfrac{1}{4}\pm \tfrac{3}{4}, i.e.

\displaystyle t = -\frac{1}{4}+\frac{3}{4} = \frac{1}{2}\qquad\text{and}\qquad t = -\frac{1}{4}-\frac{3}{4} = -1\,\textrm{.}


Because \displaystyle t=\sin x, this means that the values of x that satisfy the equation in the exercise will necessarily satisfy one of the basic equations \displaystyle \sin x = \tfrac{1}{2} or \displaystyle \sin x = -1\,.


\displaystyle \sin x = \frac{1}{2}:

This equation has the solutions \displaystyle x = \pi/6 and \displaystyle x = \pi - \pi/6 = 5\pi/6 in the unit circle and the general solution is

\displaystyle x = \frac{\pi}{6}+2n\pi\qquad\text{and}\qquad x = \frac{5\pi}{6}+2n\pi\,,

where n is an arbitrary integer.


\displaystyle \sin x = -1:

The equation has only one solution \displaystyle x = 3\pi/2 in the unit circle, and the general solution is therefore

\displaystyle x = \frac{3\pi}{2} + 2n\pi\,,

where n is an arbitrary integer.


All of the solution to the equation are given by

\displaystyle \left\{\begin{align}

x &= \pi/6+2n\pi\,,\\[5pt] x &= 5\pi/6+2n\pi\,,\\[5pt] x &= 3\pi/2+2n\pi\,, \end{align}\right.

where n is an arbitrary integer.