Processing Math: 43%
1.3 Exercises
From Förberedande kurs i matematik 1
(Difference between revisions)
m |
|||
Line 98: | Line 98: | ||
===Exercise 1.3:6=== | ===Exercise 1.3:6=== | ||
<div class="ovning"> | <div class="ovning"> | ||
- | + | In each of the following cases, determine which is the larger of the two numbers. | |
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
|a) | |a) |
Current revision
Theory | Exercises |
Exercise 1.3:1
Calculate
a) | ![]() | b) | ![]() | c) | | d) | ![]() ![]() |
Answer | Solution a | Solution b | Solution c | Solution d
Exercise 1.3:2
Write each of the following as a power of
a) | ![]() ![]() | b) | | c) | |
Answer | Solution a | Solution b | Solution c
Exercise 1.3:3
Write each of the following as a power of
a) | | b) | | c) | | d) | | e) | |
Answer | Solution a | Solution b | Solution c | Solution d | Solution e
Exercise 1.3:4
Calculate
a) | ![]() | b) | ![]() ![]() | c) | \displaystyle \displaystyle \frac{5^{12}}{5^{-4}}\cdot(5^{2})^{-6} |
d) | \displaystyle 2^{2^{\scriptstyle3}}\cdot(-2)^{\scriptstyle-4} | e) | \displaystyle 625\cdot(5^{8}+5^{9})^{-1} |
Answer | Solution a | Solution b | Solution c | Solution d | Solution e
Exercise 1.3:5
Calculate
a) | \displaystyle 4^{1/2} | b) | \displaystyle 4^{-1/2} | c) | \displaystyle 9^{3/2} |
d) | \displaystyle \left(47^{2/3} \right) ^{3} | e) | \displaystyle 3^{1\textrm{.}4}\cdot3^{0\textrm{.}6} | f) | \displaystyle \bigl( 125 ^{1/3} \bigr)^2\cdot \bigl( 27^{1/3} \bigr)^{-2}\cdot9^{1/2} |
Answer | Solution a | Solution b | Solution c | Solution d | Solution e | Solution f
Exercise 1.3:6
In each of the following cases, determine which is the larger of the two numbers.
a) | \displaystyle 256^{1/3}\ and \displaystyle \ 200^{1/3} | b) | \displaystyle 0\textrm{.}5^{-3}\ and \displaystyle \ 0\textrm{.}4^{-3} | c) | \displaystyle 0\textrm{.}2^5\ and \displaystyle \ 0\textrm{.}2^{7} |
d) | \displaystyle 400^{1/3}\ and \displaystyle \ \bigl(5^{1/3}\bigr)^{4} | e) | \displaystyle 125^{1/2}\ and \displaystyle \ 625^{1/3} | f) | \displaystyle 2^{56}\ and \displaystyle \ 3^{40} |
Answer | Solution a | Solution b | Solution c | Solution d | Solution e | Solution f