Processing Math: 100%
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

2.2 Exercises

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
Line 65: Line 65:
|b)
|b)
|| Skriv ekvationen f&ouml;r linjen<math>,3x+4y-5=0</math> på formen <math>\,y=kx+m\,</math>
|| Skriv ekvationen f&ouml;r linjen<math>,3x+4y-5=0</math> på formen <math>\,y=kx+m\,</math>
-
|-
+
{4x}+\frac{1}{2}\right)-\left(\displaystyle\frac{1}{2x}-\frac{2}{3}\right)^2-\left(\displaystyle\frac{1}{2x}+\frac{1}{3}\right)\left(\displaystyle\frac{1}{2x}-\frac{1}{3}\right)=0</math>
-
|c)
+
-
|| <math>\left(\displaystyle\frac{1}{x-1}-\frac{1}{x+1}\right)\left(x^2+\frac{1}{2}\right)=\displaystyle\frac{6x-1}{3x-3}</math>
+
-
|-
+
-
|d)
+
-
|| <math>\left(\displaystyle\frac{2}{x}-3\right)\left(\displaystyle\frac{1}{4x}+\frac{1}{2}\right)-\left(\displaystyle\frac{1}{2x}-\frac{2}{3}\right)^2-\left(\displaystyle\frac{1}{2x}+\frac{1}{3}\right)\left(\displaystyle\frac{1}{2x}-\frac{1}{3}\right)=0</math>
+
|}
|}
</div>{{#NAVCONTENT:Svar|Svar 2.2:4|Lösning a|Lösning 2.2:4a|Lösning b|Lösning 2.2:4b}}
</div>{{#NAVCONTENT:Svar|Svar 2.2:4|Lösning a|Lösning 2.2:4a|Lösning b|Lösning 2.2:4b}}

Revision as of 13:05, 31 March 2008

 

Template:Mall:Ej vald flik Template:Mall:Vald flik

 

Övning 2.2:1

Lös ekvationerna

a) x2=1 b) 2x+1=13
c) 31x1=x d) 5x+7=2x6

Övning 2.2:2

Lös ekvationerna

a) 65x9x+2=21 b) 78x+345x7=2
c) (x+3)2(x5)2=6x+4 d) (x2+4x+1)2+3x42x2=(2x2+2x+3)2

Övning 2.2:3

Lös ekvationerna

a) x3x+3x2x+5=0
b) 4x4x712x3=1
c) 1x11x+1x2+21=3x36x1 
d) x2314x+2112x32212x+3112x31=0 

Övning 2.2:4

a) Skriv ekvationen för linjeny=2x+3 på formen y=kx+m
b) Skriv ekvationen för linjen3x+4y5=0 på formen y=kx+m

{4x}+\frac{1}{2}\right)-\left(\displaystyle\frac{1}{2x}-\frac{2}{3}\right)^2-\left(\displaystyle\frac{1}{2x}+\frac{1}{3}\right)\left(\displaystyle\frac{1}{2x}-\frac{1}{3}\right)=0</math>