1.3 Powers

From Förberedande kurs i matematik 1

Revision as of 13:12, 10 September 2008 by Tekbot (Talk | contribs)
Jump to: navigation, search
       Theory          Exercises      

Content:

  • Positive integer exponent
  • Negative integer exponent
  • Rational exponents
  • Laws of exponents

Learning outcomes:

After this section, you will have learned to:

  • Recognise the concepts of base and exponent.
  • Calculate integer power expressions
  • Use the laws of exponents to simplify expressions containing powers.
  • Know when the laws of exponents are applicable (positive basis).
  • Determine which of two powers is the larger based on a comparison of the base / exponent.

Integer exponents

We use the multiplication symbol as a short-hand for repeated addition of the same number, for example,

\displaystyle 4 + 4 + 4 + 4 + 4 = 4 \cdot 5\mbox{.}

In a similar way we use exponentials as a short-hand for repeated multiplication of the same number:

\displaystyle 4 \cdot 4 \cdot 4 \cdot 4 \cdot 4 = 4^5\mbox{.}

The 4 is called the base of the power, and the 5 is its exponent.

Example 1

  1. \displaystyle 5^3 = 5 \cdot 5 \cdot 5 = 125
  2. \displaystyle 10^5 = 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10 = 100 000
  3. \displaystyle 0{,}1^3 = 0{,}1 \cdot 0{,}1 \cdot 0{,}1 = 0{,}001
  4. \displaystyle (-2)^4 = (-2) \cdot (-2) \cdot (-2) \cdot (-2)= 16, but \displaystyle -2^4 = -(2^4) = - (2 \cdot 2 \cdot 2 \cdot 2) = -16
  5. \displaystyle 2\cdot 3^2 = 2 \cdot 3 \cdot 3 = 18, but \displaystyle (2\cdot3)^2 = 6^2 = 36

Example 2

  1. \displaystyle \left(\displaystyle\frac{2}{3}\right)^3 = \displaystyle\frac{2}{3}\cdot \displaystyle\frac{2}{3} \cdot \displaystyle\frac{2}{3} = \displaystyle\frac{2^3}{3^3} = \displaystyle\frac{8}{27}
  2. \displaystyle (2\cdot 3)^4 = (2\cdot 3)\cdot(2\cdot 3)\cdot(2\cdot 3)\cdot(2\cdot 3)
    \displaystyle \phantom{(2\cdot 3)^4}{} = 2\cdot 2\cdot 2\cdot 2\cdot 3\cdot 3\cdot 3\cdot 3 = 2^4 \cdot 3^4 = 1296

The last example can be generalised to two useful rules when calculating powers:

\displaystyle \left(\displaystyle\frac{a}{b}\right)^m = \displaystyle\frac{a^m}{b^m} \quad \mbox{and}\quad (ab)^m = a^m b^m\,\mbox{.}


Laws of exponents

There are a few more rules coming from the definition of power which are useful when doing calculations.You can see for example that

\displaystyle 2^3 \cdot 2^5 = \underbrace{\,2\cdot 2\cdot 2\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ 3\ {\rm factors }} \cdot \underbrace{\,2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ 5\ {\rm factors }} = \underbrace{\,2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ (3 + 5)\ {\rm factors}} = 2^{3+5} = 2^8

which generally can be expressed as

\displaystyle a^m \cdot a^n = a^{m+n}\mbox{.}

There is also a useful simplification rule for division of powers which have the same base.

\displaystyle \frac{2^7}{2^3}=\displaystyle\frac{ 2\cdot 2\cdot 2\cdot 2\cdot \not{2}\cdot \not{2}\cdot \not{2} }{ \not{2}\cdot \not{2}\cdot \not{2}} = 2^{7-3}=2^4\mbox{.}

The general rule is

\displaystyle \displaystyle\frac{a^m}{a^n}= a^{m-n}\mbox{.}

For the case when the base itself is a power one has another useful rule. We see that

\displaystyle (5^2)^3 = 5^2 \cdot 5^2 \cdot 5^2 = \underbrace{\,5\cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ 2\ {\rm factors}} \cdot \underbrace{\,5\cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ 2\ {\rm factors}} \cdot \underbrace{\,5\cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{2\ {\rm factors}} = \underbrace{\,5\cdot 5 \cdot 5 \cdot 5 \cdot 5 \cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{3\ {\rm times}\ 2\ {\rm factors}} = 5^{2 \cdot 3} = 5^6\mbox{}

and

\displaystyle (5^3)^2 = 5^3\cdot5^3= \underbrace{\,5\cdot 5 \cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{3\ {\rm factors}} \cdot \underbrace{\,5\cdot 5 \cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{3\ {\rm factors}} = \underbrace{\,5\cdot 5 \cdot 5\,\cdot\,5\cdot 5 \cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{2\ {\rm times}\ 3\ {\rm factors}}=5^{3\cdot2}=5^6\mbox{.}


Generally, this can be written

\displaystyle (a^m)^n = a^{m \cdot n}\mbox{.}

Example 3

  1. \displaystyle 2^9 \cdot 2^{14} = 2^{9+14} = 2^{23}
  2. \displaystyle 5\cdot5^3 = 5^1\cdot5^3 = 5^{1+3} = 5^4
  3. \displaystyle 3^2 \cdot 3^3 \cdot 3^4 = 3^{2+3+4} = 3^9
  4. \displaystyle 10^5 \cdot 1000 = 10^5 \cdot 10^3 = 10^{5+3} = 10^8

Example 4

  1. \displaystyle \frac{3^{100}}{3^{98}} = 3^{100-98} = 3^2
  2. \displaystyle \frac{7^{10}}{7} = \frac{7^{10}}{7^1} = 7^{10-1} = 7^9


If a fraction has the same expression for the exponent both in the numerator and the denominator we can simplify in two ways:

\displaystyle \frac{5^3}{5^3} = 5^{3-3} = 5^0\quad\text{as well as}\quad \frac{5^3}{5^3} = \frac{ 5 \cdot 5 \cdot 5 }{ 5 \cdot 5 \cdot 5 } = \frac{125}{125} = 1\mbox{.}


The only way for the rules of exponents to agree is to make the following but natural definition that for all non zero a one has that


\displaystyle a^0 = 1\mbox{.}

We can also run into examples where the exponent in the denominator is greater than that in the numerator. We can have, for example,

\displaystyle \frac{3^4}{3^6} = 3^{4-6} = 3^{-2}\quad\text{and}\quad \frac{3^4}{3^6} = \frac{\not{3} \cdot \not{3} \cdot \not{3} \cdot \not{3} }{ \not{3} \cdot \not{3} \cdot \not{3} \cdot \not{3} \cdot 3 \cdot 3} = \frac{1}{3 \cdot 3} = \frac{1}{3^2}\mbox{.}

We see that it is necessary to assume that the negative exponent implies that

\displaystyle 3^{-2} = \frac{1}{3^2}\mbox{.}


The general definition of negative exponents is to interpret negative exponents of all non zero numbers a as follows

\displaystyle a^{-n} = \frac{1}{a^n}\mbox{.}


Example 5

  1. \displaystyle \frac{7^{1293}}{7^{1293}} = 7^{1293 - 1293} = 7^0 = 1
  2. \displaystyle 3^7 \cdot 3^{-9} \cdot 3^4 = 3^{7+(-9)+4} = 3^2
  3. \displaystyle 0{,}001 = \frac{1}{1000} = \frac{1}{10^3} = 10^{-3}
  4. \displaystyle 0{,}008 = \frac{8}{1000} = \frac{1}{125} = \frac{1}{5^3} = 5^{-3}
  5. \displaystyle \left(\frac{2}{3}\right)^{-1} = \frac{1}{\displaystyle\left(\frac{2}{3}\right)^1} = 1\cdot \frac{3}{2} = \frac{3}{2}
  6. \displaystyle \left(\frac{1}{3^2}\right)^{-3} = (3^{-2})^{-3} = 3^{(-2)\cdot(-3)}=3^6
  7. \displaystyle 0.01^5 = (10^{-2})^5 = 10^{-2 \cdot 5} = 10^{-10}

If the base of a power is \displaystyle -1 then the expression will simplify to either \displaystyle -1 or \displaystyle +1 depending on the value of the exponent

\displaystyle \eqalign{(-1)^1 &= -1\cr (-1)^2 &= (-1)\cdot(-1) = +1\cr (-1)^3 &= (-1)\cdot(-1)^2 = (-1)\cdot 1 = -1\cr (-1)^4 &= (-1)\cdot(-1)^3 = (-1)\cdot (-1) = +1\cr \quad\hbox{etc.}}

The rule is that \displaystyle (-1)^n is equal to\displaystyle -1 if \displaystyle n is odd and equal to \displaystyle +1 if \displaystyle n is even .


Example 6

  1. \displaystyle (-1)^{56} = 1\quad as \displaystyle 56 is an even number
  2. \displaystyle \frac{1}{(-1)^{11}} = \frac{1}{-1} = -1\quad because 11 is an odd number
  3. \displaystyle \frac{(-2)^{127}}{2^{130}} = \frac{(-1 \cdot 2)^{127}}{2^{130}} = \frac{(-1)^{127} \cdot 2^{127}}{2^{130}} = \frac{-1 \cdot 2^{127}}{2^{130}} \displaystyle \phantom{\frac{(-2)^{127}}{2^{130}}}{} = - 2^{127-130} = -2^{-3} = - \frac{1}{2^3} = - \frac{1}{8}


Changing the base

A point to observe is that when simplifying expressions try, if possible, to combine powers by choosing the same base. This often involves selecting 2, 3 or 5 as a base and, therefore, it is a good idea to learn to recognize the powers of these numbers, such as

\displaystyle 4=2^2,\;\; 8=2^3,\;\; 16=2^4,\;\; 32=2^5,\;\; 64=2^6,\;\; 128=2^7,\;\ldots
\displaystyle 9=3^2,\;\; 27=3^3,\;\; 81=3^4,\;\; 243=3^5,\;\ldots
\displaystyle 25=5^2,\;\; 125=5^3,\;\; 625=5^4,\;\ldots

But even

\displaystyle \frac{1}{4}=\frac{1}{2^2} = 2^{-2},\;\; \frac{1}{8}=\frac{1}{2^3}=2^{-3},\;\; \frac{1}{16}=\frac{1}{2^4}=2^{-4},\;\ldots
\displaystyle \frac{1}{9}=\frac{1}{3^2}=3^{-2},\;\; \frac{1}{27}=\frac{1}{3^3}=3^{-3},\;\ldots
\displaystyle \frac{1}{25}=\frac{1}{5^2}=5^{-2},\;\; \frac{1}{125}=\frac{1}{5^3}=5^{-3},\;\ldots

and so on.

Example 7

  1. Write \displaystyle \ 8^3 \cdot 4^{-2} \cdot 16\ as a power with base 2

    \displaystyle 8^3 \cdot 4^{-2} \cdot 16 = (2^3)^3 \cdot (2^2)^{-2} \cdot 2^4 = 2^{3 \cdot 3} \cdot 2^{2 \cdot (-2)} \cdot 2^4
    \displaystyle \qquad\quad{}= 2^9 \cdot 2^{-4} \cdot 2^4 = 2^{9-4+4} =2^9
  2. Write \displaystyle \ \frac{27^2 \cdot (1/9)^{-2}}{81^2}\ as a power with base 3.

    \displaystyle \frac{27^2 \cdot (1/9)^{-2}}{81^2} = \frac{(3^3)^2 \cdot (1/3^2)^{-2}}{(3^4)^2} = \frac{(3^3)^2 \cdot (3^{-2})^{-2}}{(3^4)^2}
    \displaystyle \qquad\quad{} = \frac{3^{3 \cdot 2} \cdot 3^{(-2) \cdot (-2)}}{3^{4 \cdot 2}} = \frac{3^6\cdot 3^4}{3^8} = \frac{3^{6 + 4}}{3^8}= \frac{3^{10}}{3^8} = 3^{10-8}= 3^2
  3. Write \displaystyle \frac{81 \cdot 32^2 \cdot (2/3)^2}{2^5+2^4} in as simple a form as possible.

    \displaystyle \frac{81 \cdot 32^2 \cdot (2/3)^2}{2^5+2^4} = \frac{3^4 \cdot (2^5)^2 \cdot \displaystyle\frac{2^2}{3^2}}{2^{4+1}+2^4} = \frac{3^4 \cdot 2^{5 \cdot 2} \cdot \displaystyle\frac{2^2}{3^2}}{2^4 \cdot 2^1 +2^4} = \frac{3^4 \cdot 2^{10} \cdot \displaystyle\frac{2^2}{3^2}}{2^4 \cdot(2^1+1)}
    \displaystyle \qquad\quad{} = \frac{ \displaystyle\frac{3^4 \cdot 2^{10} \cdot 2^2}{3^2}}{2^4 \cdot 3} = \frac{ 3^4 \cdot 2^{10} \cdot 2^2 }{3^2 \cdot 2^4 \cdot 3 } = 3^{4-2-1} \cdot 2^{10+2-4} = 3^1 \cdot 2^8= 3\cdot 2^8


Rational exponents

What happens if a number is raised to a rational exponent? Do the definitions and the rules we have used above to do calculations still hold?

For instance, since

\displaystyle 2^{1/2} \cdot 2^{1/2} = 2^{1/2 + 1/2} = 2^1 = 2

so \displaystyle 2^{1/2} must be the same as \displaystyle \sqrt{2} because \displaystyle \sqrt2 is defined as the number which satisfies \displaystyle \sqrt2\cdot\sqrt2 = 2 .

Generally, we define

\displaystyle a^{1/2} = \sqrt{a}\mbox{.}

We must assume that \displaystyle a\ge 0, since no real number multiplied by itself can give a negative number.

We also see that, for example,

\displaystyle 5^{1/3} \cdot 5^{1/3} \cdot 5^{1/3} = 5^{1/3 + 1/3 +1/3} = 5^1 = 5

which means that \displaystyle \,5^{1/3} = \sqrt[\scriptstyle3]{5}\mbox{,}\, which can be generalised to

\displaystyle a^{1/n} = \sqrt[\scriptstyle n]{a}\mbox{.}

By combining this definition with one of the previous laws of exponents \displaystyle ((a^m)^n=a^{m\cdot n}) gives that for all \displaystyle a\ge0 it holds that

\displaystyle a^{m/n} = (a^m)^{1/n} = \sqrt[\scriptstyle n]{a^m}

or

\displaystyle a^{m/n} = (a^{1/n})^m = (\sqrt[\scriptstyle n]{a}\,)^m\mbox{.}

Example 8

  1. \displaystyle 27^{1/3} = \sqrt[\scriptstyle 3]{27} = 3\quad as \displaystyle 3 \cdot 3 \cdot 3 =27
  2. \displaystyle 1000^{-1/3} = \frac{1}{1000^{1/3}} = \frac{1}{(10^3)^{1/3}} = \frac{1}{10^{3 \cdot \frac{1}{3}}} = \frac{1}{10^1} = \frac{1}{10}
  3. \displaystyle \frac{1}{\sqrt{8}} = \frac{1}{8^{1/2}} = \frac{1}{(2^3)^{1/2}} = \frac{1}{2^{3/2}} = 2^{-3/2}
  4. \displaystyle \frac{1}{16^{-1/3}} = \frac{1}{(2^4)^{-1/3}} = \frac{1}{2^{-4/3}} = 2^{-(-4/3)}= 2^{4/3}


Comparison of powers

If we do not have access to calculators and wish to compare the size of powers, one can sometimes achieve this by comparing bases or exponents.

If the base of a power is greater than \displaystyle 1 then the power is larger the larger the exponent. On the other hand, if the base lies between \displaystyle 0 and \displaystyle 1 then the power decreases as the exponent grows.

Example 9

  1. \displaystyle \quad 3^{5/6} > 3^{3/4}\quad as the base \displaystyle 3 is greater than \displaystyle 1 and the first exponent \displaystyle 5/6 is greater than the second exponent \displaystyle 3/4.
  2. \displaystyle \quad 3^{-3/4} > 3^{-5/6}\quad as the base is greater than \displaystyle 1 and the exponents satisfy \displaystyle -3/4 > - 5/6.
  3. \displaystyle \quad 0{,}3^5 < 0{,}3^4 \quadas the base \displaystyle 0{,}3 is between \displaystyle 0 and \displaystyle 1 and \displaystyle 5 > 4.

If a power has a positive exponent, it will get larger the larger the base becomes. The opposite applies if the exponent is negative: that is, the power decreases as the base gets larger.

Example 10

  1. \displaystyle \quad 5^{3/2} > 4^{3/2}\quad as the base \displaystyle 5 is larger than the base \displaystyle 4 and both powers have the same positive exponent \displaystyle 3/2.
  2. \displaystyle \quad 2^{-5/3} > 3^{-5/3}\quad as the bases satisfy \displaystyle 2<3 and the powers have a negative exponent \displaystyle -5/3.

Sometimes powers must be rewritten in order to determine the relative sizes. For example to compare \displaystyle 125^2 with \displaystyle 36^3one can rewrite them as

\displaystyle

125^2 = (5^3)^2 = 5^6\quad \text{and}\quad 36^3 = (6^2)^3 = 6^6

after which one can see that \displaystyle 36^3 > 125^2.

Example 11

Determine which of the following pairs of numbers is the greater

  1. \displaystyle 25^{1/3}   and  \displaystyle 5^{3/4} .

    The base 25 can be rewritten in terms of the second base \displaystyle 5 by putting \displaystyle 25= 5\cdot 5= 5^2. Therefore
    \displaystyle 25^{1/3} = (5^2)^{1/3} = 5^{2 \cdot \frac{1}{3}}= 5^{2/3}

    and then we see that

    \displaystyle 5^{3/4} > 25^{1/3}
    since \displaystyle \frac{3}{4} > \frac{2}{3} and the base \displaystyle 5 is larger than \displaystyle 1.
  2. \displaystyle (\sqrt{8}\,)^5   and \displaystyle 128.

    Both \displaystyle 8 and \displaystyle 128 can be written as powers of \displaystyle 2
    \displaystyle \eqalign{8 &= 2\cdot 4 = 2 \cdot 2 \cdot 2 = 2^3\mbox{,}\\ 128 &= 2\cdot 64 = 2\cdot 2\cdot 32 = 2\cdot 2\cdot 2\cdot 16 = 2\cdot 2\cdot 2\cdot 2\cdot 8\\ &= 2\cdot 2\cdot 2\cdot 2\cdot 2^3 = 2^7\mbox{.}}

    This means that

    \displaystyle \begin{align*}
     (\sqrt{8}\,)^5  &= (8^{1/2})^5 = (8)^{5/2} = (2^3)^{5/2}
                      = 2^{3\cdot\frac{5}{2}}= 2^{15/2}\\
     128 &= 2^7 = 2^{14/2}
     \end{align*}
    

    and thus

    \displaystyle (\sqrt{8}\,)^5 > 128
    because \displaystyle \frac{15}{2} > \frac{14}{2} and the base \displaystyle 2 is greater than \displaystyle 1.
  3. \displaystyle (8^2)^{1/5} and \displaystyle (\sqrt{27}\,)^{4/5}.

    Since \displaystyle 8=2^3 and \displaystyle 27=3^3 a first step can be to simplify and write the numbers as powers of \displaystyle 2 and \displaystyle 3 respectively,
    \displaystyle \begin{align*}
     (8^2)^{1/5} &= (8)^{2/5} = (2^3)^{2/5} = 2^{3\cdot \frac{2}{5}}
                  = 2^{6/5}\mbox{,}\\
     (\sqrt{27}\,)^{4/5} &= (27^{1/2})^{4/5}
                  = 27^{ \frac{1}{2} \cdot \frac{4}{5}} = 27^{2/5}
                  = (3^3)^{2/5} = 3^{3 \cdot \frac{2}{5}}
                  = 3^{6/5}\mbox{.}
    

    \end{align*}

    Now we see that

    \displaystyle (\sqrt{27}\,)^{4/5} > (8^2)^{1/5}

    because \displaystyle 3>2 and exponent \displaystyle \frac{6}{5} is positive.

  4. \displaystyle 3^{1/3}   and  \displaystyle 2^{1/2}

    We rewrite the exponents so they have a common denominator
    \displaystyle \frac{1}{3} = \frac{2}{6} \quad and \displaystyle \quad \frac{1}{2} = \frac{3}{6}.

    Then we have that

    \displaystyle \begin{align*}
     3^{1/3} &= 3^{2/6} = (3^2)^{1/6} = 9^{1/6}\\
     2^{1/2} &= 2^{3/6} = (2^3)^{1/6} = 8^{1/6}
    

    \end{align*}

    and we see that

    \displaystyle 3^{1/3} > 2^{1/2}
    because \displaystyle 9>8 and the exponent \displaystyle 1/6 is positive.

Exercises


Study advice

Basic and final tests

After you have read the text and worked through the exercises, you should do the basic and final tests to pass this section. You can find the link to the tests in your student lounge.


Keep in mind that:

The number raised to the power 0, is always 1, if the number (the base) is not 0.


Reviews

For those of you who want to deepen your studies or need more detailed explanations consider the following references

Learn more about powers in the English Wikipedi

What is the greatest prime number? Read more at The Prime Page


Useful web sites

Here you can practise the laws of exponents