Loading http://wiki.math.se/jsMath/fonts/msam10/def.js
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Solution 4.3:7b

From Förberedande kurs i matematik 1

Revision as of 10:29, 30 September 2008 by Ian (Talk | contribs)
Jump to: navigation, search

Using the addition formula, we rewrite sinx+y  as


\displaystyle \text{sin}\left( x+y \right)=\sin x\centerdot \cos y+\cos x\centerdot \sin y


If we use the same solution procedure as in exercise a, we use the Pythagorean identity

\displaystyle \cos ^{2}v+\sin ^{2}v=1 to express the unknown factors \displaystyle x\text{ } and \displaystyle y\text{ } in terms of \displaystyle \text{cos }x\text{ } and \displaystyle \text{cos }y,

\displaystyle \begin{align} & \sin x=\pm \sqrt{1-\text{cos}^{2}x}=\pm \sqrt{1-\left( \frac{2}{5} \right)^{2}}=\pm \sqrt{1-\frac{4}{25}}=\pm \frac{\sqrt{21}}{5}, \\ & \sin y=\pm \sqrt{1-\text{cos}^{2}y}=\pm \sqrt{1-\left( \frac{3}{5} \right)^{2}}=\pm \sqrt{1-\frac{9}{25}}=\pm \frac{4}{5} \\ \end{align}


The angles \displaystyle x\text{ } and \displaystyle y\text{ } lie in the first quadrant and both \displaystyle \text{sin }x\text{ } and \displaystyle \text{sin }y\text{ } are therefore positive, i.e.


\displaystyle \sin x=\frac{\sqrt{21}}{5} and \displaystyle \sin y=\frac{4}{5}


Thus, the answer is


\displaystyle \text{sin}\left( x+y \right)=\frac{\sqrt{21}}{5}\centerdot \frac{3}{5}+\frac{2}{5}\centerdot \frac{4}{5}=\frac{3\sqrt{21}+8}{25}