Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Solution 4.1:4a

From Förberedande kurs i matematik 1

Revision as of 10:40, 3 October 2008 by Tek (Talk | contribs)
(diff) ←Older revision | Current revision (diff) | Newer revision→ (diff)
Jump to: navigation, search

If we draw in the points in a coordinate system, we can see the line between the points as the hypotenuse in an imaginary right-angled triangle, where the opposite and adjacent are parallel with the x- and y-axes, respectively.



In this triangle, it is easy to measure the lengths of the opposite and the adjacent, which are simply the distances between the points in the x- and y-directions, respectively.


x = 5 - 1 = 4  and  ∆y = 4 - 1 = 3


Using the Pythagorean theorem, we can then calculate the length of the hypotenuse, which is also the distance between the points:

d=(x)2+(y)2=42+32=16+9=25=5. 


Note: In general, the distance between two points (xy) and (ab) is given by the formula

d=(xa)2+(yb)2.