Solution 3.4:2b
From Förberedande kurs i matematik 1
If we write the equation as
ex
2+ex=4
we see that
For clarity, we set
and we solve this second-degree equation by completing the square,
t+21
2−
21
2=
t+21
2−41
which gives
t+21
2−41=4
t=−21
2
17
These two roots give us two possible values for
17
17
In the first case, the right-hand side is negative and because "
17
1
2
17−21
NOTE: It is a little tricky to check the answer to the original equation, so we can be satisfied with substituting
17−21
LHS
\displaystyle \begin{align}
& =\left( \frac{\sqrt{17}}{2}-\frac{1}{2} \right)^{2}+\left( \frac{\sqrt{17}}{2}-\frac{1}{2} \right)=\frac{17}{4}-2\centerdot \frac{1}{2}\centerdot \frac{\sqrt{17}}{2}+\frac{1}{4}+\frac{\sqrt{17}}{2}-\frac{1}{2} \\
& =\frac{17}{4}+\frac{1}{4}-\frac{1}{2}=\frac{17+1-2}{4}=\frac{16}{4}=4= \\
\end{align}
\displaystyle =
RHS.