Solution 4.4:4
From Förberedande kurs i matematik 1
The idea is first to find the general solution to the equation and then to see which angles lie between
If we start by considering the expression
![]() ![]() |
There is then a further solution which satisfies 2v+10
360
−90
=20
![]() ![]() ![]() ![]() |
Now it is easy to write down the general solution,
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
and if we make v the subject, we get
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
For different values of the integers n, we see that the corresponding solutions are:
![]() ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() ![]() | ||
![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() | |||
![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() | |||
![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() | |||
![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() | |||
![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() | |||
![]() ![]() ![]() ![]() | \displaystyle v = 120^{\circ} + 3\cdot 180^{\circ} = 660^{\circ} | |||
\displaystyle \cdots\cdots | \displaystyle \cdots\cdots | \displaystyle \cdots\cdots |
From the table, we see that the solutions that are between \displaystyle 0^{\circ} and \displaystyle 360^{\circ} are
\displaystyle v = 50^{\circ},\quad v=120^{\circ },\quad v=230^{\circ}\quad\text{and}\quad v=300^{\circ}\,\textrm{.} |