Lösning 2.1.7a
Förberedande kurs i matematik
Om \displaystyle 2 och \displaystyle 5 ska vara lösningar till \displaystyle x^2+ax+b, så måste (enligt faktorsatsen) polynomet vara delbart med \displaystyle (x-2)(x-5). Det polynomet är av grad två, precis som \displaystyle x^2+ax+b, och därför kan inga fler faktorer förekomma. Därför måste vi ha att \displaystyle x^2+ax+b=(x-2)(x-5)=x^2-7x+10. Om vi jämför koefficienterna, får vi att \displaystyle a=-7 och att \displaystyle b=10.