Processing Math: 56%
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath

Testsida2

Förberedande kurs i matematik

Version från den 12 juni 2012 kl. 12.01; Sass (Diskussion | bidrag)
Hoppa till: navigering, sök

Övning 3.1.1

Låt A=124 och B=34. Bestäm

a) AB b) AB c) AB d) BA


Övning 3.1.2

Bestäm om följande funktioner är injektiva respektive surjektiva.

a) f: så att f(x)=x2.
b) g:+ så att g(x)=x3.

+ definieras som +=xx0

c) h:+ så att h(x)=x .
d) r definierad genom r(x)=f(g(x)).
e) s definierad genom s(x)=f(h(x)).


Övning 3.1.3

Låt f:xx0 så att f(x)=x2 och g:xx0 så att g(x)=x  Bestäm målmängd, definitionsmängd, värdemängd, surjektivitet och injektivitet för följande funktioner:

a) \displaystyle f b) \displaystyle g c) \displaystyle h(x) = f(g(x)).


f: \begin{list}{}{} \item Definitionsmängd: \displaystyle \mathbb{R} \item Målmängd: \displaystyle \{x\in \mathbb{R}\mid x\geq0\} \item Värdemängd: \displaystyle \{x\in \mathbb{R}\mid x\geq0\} \item Surjektivitet: Ja, mål- och värdemängd är lika. \item Injektivitet: Nej, till exempel är \displaystyle f(-1)=f(1)=1. \end{list} g: \begin{list}{}{} \item Definitionsmängd: \displaystyle \{x\in \mathbb{R}\mid x\geq0\} \item Målmängd: \displaystyle \mathbb{R} \item Värdemängd: \displaystyle \{x\in \mathbb{R}\mid x\leq0\} \item Surjektivitet: Nej, inga positiva tal antas. \item Injektivitet: Ja, eftersom funktionen är strikt avtagande. \end{list} h: \begin{list}{}{} \item Definitionsmängd: \displaystyle \{x\in \mathbb{R}\mid x\geq0\} \item Målmängd: \displaystyle \{x\in \mathbb{R}\mid x\geq0\} \item Värdemängd: \displaystyle \{x\in \mathbb{R}\mid x\geq0\} \item Surjektivitet: Ja, eftersom mål- och värdemängd är lika. \item Injektivitet: Vi har \displaystyle h(x)=f(g(x))=(-\sqrt{x})^2 = x så den är injektiv. \end{list} Notera att \displaystyle h är bijektiv trots att varken \displaystyle f eller \displaystyle g är det.