2.3 Andragradsuttryck
Sommarmatte 1
Innehåll:
Lärandemål: Efter detta avsnitt ska du ha lärt dig att:
|
|
[redigera] Teori[redigera] AndragradsekvationerEn andragradsekvation är en ekvation som kan skrivas som $$x^2+px+q=0$$ där $x$ är den obekanta och $p$ och $q$ är konstanter.
Ekvationen $\,x^2=a\,$ där $a$ är ett postivt tal har två lösningar (rötter) $\,x=\sqrt{a}\,$ och $\,x=-\sqrt{a}\,$. Exempel 1
Exempel 2
För att lösa allmänna andragradsekvationer använder vi en teknik som kallas kvadratkomplettering. Om vi betraktar kvadreringsregeln $$x^2 + 2ax + a^2 = (x+a)^2$$ och subtraherar $a^2$ från båda led så får vi Kvadratkomplettering: $$x^2 +2ax = (x+a)^2 -a^2$$ Exempel 3
Tips: Tänk på att man alltid kan pröva lösningar till en ekvation genom att sätta in värdet och se om ekvationen blir uppfylld. Man gör detta för att upptäcka eventuella slarvfel. För exempel 3a ovan har vi två fall att pröva. Vi kallar vänster- och högerleden för VL respektive HL:
I båda fallen kommer vi fram till VL = HL. Ekvationen är alltså uppfylld i båda fallen. Med kvadratkomplettering går det att visa att den allmänna andragradsekvationen $$x^2+px+q=0$$ har lösningarna $$x = - \displaystyle\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^2-q}$$ förutsatt att uttrycket under rottecknet inte är negativt. Ibland kan man faktorisera ekvationer och direkt se vilka lösningarna är. Exempel 4
[redigera] ParablerFunktionerna $$\eqalign{y&=x^2-2x+5\cr y&=4-3x^2\cr y&=\textstyle\frac{1}{5}x^2 +3x}$$ är exempel på andragradsfunktioner. Allmänt kan en andragradsfunktion skrivas som $$y=ax^2+bx+c$$ där $a$, $b$ och $c$ är konstanter och där $a\ne0$. Grafen till en andragradsfunktion kallas för en parabel och figurerna visar utseendet för två typexempel $\,y=x^2\,$ och $\,y=-x^2$. Eftersom uttrycket $\,x^2\,$ är som minst när $\,x=0\,$ har parabeln $\,y=x^2\,$ ett minimum när $\,x=0\,$ och parabeln $\,y=-x^2\,$ ett maximum för $\,x=0\,$. Notera också att parablerna ovan är symmetriska kring $y$-axeln eftersom värdet på $\,x^2\,$ inte beror på vilket tecken $x$ har. Exempel 5
Med kvadratkomplettering kan vi behandla alla typer av parabler. Exempel 6 Skissera parabeln $\ y=x^2+2x+2\,$.
Exempel 7 Bestäm var parabeln $\,y=x^2-4x+3\,$ skär $x$-axeln.
Vänsterledet kvadratkompletteras $$x^2-4x+3=(x-2)^2-2^2+3=(x-2)^2-1$$ och detta ger ekvationen $$(x-2)^2= 1 \; \mbox{.}$$ Efter rotutdragning får vi lösningarna
Parabeln skär $x$-axeln i punkterna $\,(1,0)\,$ och $\,(3,0)\,$.
Exempel 8 Bestäm det minsta värde som uttrycket $\,x^2+8x+19\,$ antar.
I figuren till höger ser vi att hela parabeln $\,y=x^2+8x+19\,$ ligger ovanför $x$-axeln och har ett minimumvärde 3 när $\,x=-4\,$.
Råd för inläsning Grund- och slutprov Efter att du har läst texten och arbetat med övningarna ska du göra grund- och slutprovet för att bli godkänd på detta avsnitt. Du hittar länken till proven i din student lounge.
Lägg ner mycket tid på algebra! Algebra är matematikens alfabet. När du väl har förstått algebra, kommer din förståelse av statistik, yta, volym och geometri vara mycket större.
för dig som vill fördjupa dig ytterligare eller skulle vilja ha en längre förklaring Läs mer om andragradsekvationer på engelska Wikipedia Läs mer om andragradsekvationer i MathWorld 101 uses of a quadratic equation - by Chris Budd and Chris Sangwin
|
|