2.3 Andragradsuttryck
Sommarmatte 1
2.3 AndragradsuttryckInnehåll:
Läromål: Efter detta avsnitt ska du ha lärt dig att:
|
||
TeoriAndragradsekvationerEn andragradsekvation är en ekvation som kan skrivas som $$x^2+px+q=0$$ där $x$ är den obekanta och $p$ och $q$ är konstanter.
Ekvationen $x^2=a$ där $a$ är ett postivt tal har två lösningar (rötter) $x=\sqrt{a}$ och $x=-\sqrt{a}$. Exempel 1
Exempel 2
För att lösa allmänna andragradsekvationer använder vi en teknik som kallas kvadratkomplettering Om vi betraktar kvaderingsregeln $$x^2 + 2ax + a^2 = (a+x)^2$$ och subtraherar $a^2$ från båda led så får vi Kvadratkomplettering: $$x^2 +2ax = (x+a)^2 -a^2$$ Detta är formeln för kvadratkomplettering. Exempel 3
Tips: Tänk på att man alltid kan pröva lösningar till en ekvation genom att sätta in värdet och se om likheten blir uppfylld. Man gör detta för att upptäcka eventuella slarvfel. För exemplet ovan har vi två fall att pröva. Vi kallar vänster- och högerleden för VL respektive HL: x = 0 medför $ \mbox{VL} = 0^2 - 4\cdot0 = 0 = \mbox{HL} $ x = 4 medför $ \mbox{VL} = 4^2 - 4\cdot4 = 0 = \mbox{HL} $ I båda fallen kommer vi fram till VL = HL. Ekvationen är alltså uppfylld i båda fallen. x = 0 och x = 4 är lösningar till ekvationen. Med kvadratkomplettering går det att visa att den allmänna andragradsekvationen $$x^2+px+q=0$$ har lösningarna $$x = - \displaystyle\frac{p}{2} \pm \sqrt{\left(\displaystyle\frac{p}{2}\right)^2-q}$$ förutsatt att uttrycket under rottecknet inte är negativt. Ibland kan man faktorisera ekvationer och direkt se vilka lösningarna är. Exempel 4 Exempeltext, använd nedanstående numrering
ParablerFunktionerna $$y=x^2-2x+5$$ $$y=4-3x^2$$ $$y=\frac{1}{5}x^2 +3x$$ är exempel på andragradsfunktioner. Allmänt kan en andragradsfunktion skrivas som $$y=ax^2+bx+c$$ där $a$, $b$ och $c$ är konstanter och där $a\ne0$. Grafen till en andragradsfunktion kallas för en parabel och figurerna visar utseendet för två typexempel $y=x^2$ och $y=-x^2$. Bild: figur 3.1.1b och 3.1.2b Eftersom uttrycket $x^2$ är som minst när $x=0$ har parabeln $y=x^2$ ett maximum för $x=0$. Notera också att parablerna ovan är symmetriska kring $y$-axeln eftersom värdet på $x^2$ inte beror på vilket tecken $x$ har. Exempel 5
Med kvaratkomplettering kan vi behandla alla typer av parabler. Exempel 6 Skissera parabeln $y=x^2+2x+2$.
Bild: figur 3.1.5b Exempel 7 Bestäm var parabeln $y=x^2-4x+3$ skär $x$-axeln. En punkt ligger på $x$-axeln om dess $y$-koordinat är noll, och de punkter på parabeln som har $y=0$ har en $x$-koordinat som uppfyller ekvationen $$x^2-4x+3$$ Vänsterledet kvadratkompletteras $$x^2-4x+3=(x-2)^2-2^2+3=(x-2)^2-1$$ och detta ger ekvationen $$(x-2)^2= 1 \; \mbox{.}$$ Efter rotutdragning får vi lösningarna:
Parabeln skär $x$-axeln i punkterna $(1,0)$ och $(3,0)$. Bild: figur 3.1.6b Exempel 8 Bestäm det minsta värdet som uttrycket $x^2+18x+19$ antar Vi kvadratkompletterar $$x^2 +8x+19=(x+4)^2 -4^2 +19 = (x+4)^2 +3$$ och då ser vi att uttrycket blir som minst lika med $3$ eftersom kvadraten $(x+4)^2$ alltid är större eller lika med $0$ oavsett vad $x$ är. I figuren till höger ser vi att hela parabeln $y=x^2+8x+19$ ligger ovanför $x$-axeln och har ett minimumvärde $3$ när $x=4$. Bild: figur 3.1.7b
Råd för inläsning Tänk på att: Att ställa upp ekvationer är som att översätta från ett språk till ett annat. Denna jämförelse användes av Newton i hans Arithmetica Universalis. Kanske kan den bidra till att öka förståelsen för de svårigheter som både studenter och lärare ställs inför, ibland. Lägg ner mycket tid på algebra! Algebra är matematikens alfabet. När du väl har förstått algebra, kommer din förståelse av statistik, yta, volym och geometri vara mycket större.
för dig som vill fördjupa dig ytterligare eller skulle vilja ha en längre förklaring Läs mer om andragradsekvationer på engelska Wikipedia Läs mer om andragradsekvationer i MathWorld 101 uses of a quadratic equation - by Chris Budd and Chris Sangwin
Experimentera - När väger ekvationens led lika? Träna på andragradsekvationer och slå ditt personliga rekord.
|
|