4.2 Trigonometriska funktioner
Sommarmatte 1
<img src="ppStdFiles2261/766677.gif" hspace='0' vspace='0' />
Man kan ha stor nytta av att känna till de exakta värdena på cosinus och sinus för några standardvinklar. Dessa vinklar dyker ofta upp i geometriska tillämpningar, och cosinus och sinus för vinklarna kan beräknas med hjälp av enhetscirkeln och några enkla trianglar. Följande vinklar är mycket viktiga:
<STYLE type="text/css"> ol.lower-alpha {list-style-type:lower-alpha} </STYLE>
- $0^\circ = 0$ rad. Med hjälp av enhetscirkeln ser man att $\cos (0) = 1$ och $\sin (0) = 0$.
- $90^\circ = \displaystyle\frac{\pi}{2} $. Enhetscirkeln ger $\cos \left(\displaystyle\frac{\pi}{2}\right) = 0$ och $\sin \left(\displaystyle\frac{\pi}{2}\right) = 1$.
- $45^\circ = \displaystyle\frac{\pi}{4} $. Vi har en likbent, rätvinklig triangel där hypotenusan (radien i enhetscirkeln) har längden 1. Om vi sätter $\cos \left(\displaystyle\frac{\pi}{4}\right) = \sin \left(\displaystyle\frac{\pi}{4}\right) = a$ och använder Pythagoras sats får vi $a^2 + a^2 = 1 \Leftrightarrow a^2 = \displaystyle\frac{1}{2} \Leftrightarrow a = \pm \displaystyle\frac{1} {\sqrt{2}}$. Eftersom a är en sidlängd kräver vi $a > 0$ och får $\cos \left(\displaystyle\frac{\pi}{4}\right) = \sin \left(\displaystyle\frac{\pi}{4}\right) = \displaystyle\frac{1}{\sqrt{2}} \approx 0,707$. Anmärkning: Det approximativa värdet kan också vara bra att känna till, t.ex. om man behöver rita det i en figur.
- $60^\circ = \displaystyle\frac{ \pi}{3}$. Vi kan bilda en liksidig triangel med sidlängden 1. Symmetrin ger $\cos \left(\displaystyle\frac{\pi}{3}\right) = \displaystyle\frac{1}{2}$. Pythagoras sats på halva triangeln med $\sin \left(\displaystyle\frac{\pi}{3}\right) = b$ ger $b^2 +(1/2)^2 = 1 \Leftrightarrow b^2 = \displaystyle\frac{3}{4} \Leftrightarrow b = \pm \displaystyle\frac{\sqrt{3}}{2}$, dvs $\sin \left(\displaystyle\frac{\pi}{3}\right) = \displaystyle\frac{\sqrt{3}}{2} \approx 0,866$.
- $30^\circ = \displaystyle\frac{\pi}{6}$. Samma resonemang som för $\displaystyle\frac{\pi}{3}$ ger $\cos \left(\displaystyle\frac{\pi}{6}\right) = \displaystyle\frac{\sqrt{3}}{2}$ och $\sin \left(\displaystyle\frac{\pi}{6}\right) = \displaystyle\frac{1}{2}$
Även cosinus och sinus för vinklar utanför första kvadranten kan beräknas med liknande trianglar, men då kan sinus eller cosinus vara negativa. Man kan t.ex. beräkna $\cos \left(\displaystyle\frac{3 \pi}{4}\right)$ med hjälp av en triangel lik den för $\displaystyle\frac{\pi}{4}$. Man får då $\cos \left(\displaystyle\frac{3 \pi}{4}\right) = – a$, där $a$ är katetens längd på samma sätt som ovan. <p align="center"><img src="ppStdFiles2261/805365.gif" hspace='0' vspace='0' />
Sammanfattning
Cosinus och sinus för $\displaystyle\frac{\pi}{4}$,$\displaystyle\frac{ \pi}{3}$ och $\displaystyle\frac{\pi}{6}$ kan sammanfattas med hjälp av två viktiga trianglar.
<p align="center"><img src="ppStdFiles2261/766676.gif" hspace='0' vspace='0' />
Ur dessa trianglar kan man få de exakta trigonometriska värdena för några vanliga vinklar:
<td valign="top">