2.3 Andragradsuttryck

Sommarmatte 1

(Skillnad mellan versioner)
Hoppa till: navigering, sök
Versionen från 24 april 2007 kl. 09.44 (redigera)
Lina (Diskussion | bidrag)
(Parabler)
← Gå till föregående ändring
Versionen från 24 april 2007 kl. 09.50 (redigera) (ogör)
Lina (Diskussion | bidrag)
(Parabler)
Gå till nästa ändring →
Rad 188: Rad 188:
På parabeln $y=x-2)^2$ behöver vi välja $x$-värden två enheter större jämfört med parabeln $y=x^2$ för att få motsvarande $y$-värden. Alltså är parabeln $y=(x-2)^2$ förskjuten två enheter åt höger jämfört med $y=x^2$.<br><br> På parabeln $y=x-2)^2$ behöver vi välja $x$-värden två enheter större jämfört med parabeln $y=x^2$ för att få motsvarande $y$-värden. Alltså är parabeln $y=(x-2)^2$ förskjuten två enheter åt höger jämfört med $y=x^2$.<br><br>
Bild: figur 3.1.4b<br><br> Bild: figur 3.1.4b<br><br>
-<li>[[Bild:766663.gif|right‎ ]]Skissera parabeln $y=2x^2$ <br><br>+</ol>
 +[[Bild:766663.gif |right]]
 +<ol type="a" start=3>
 +<li>Skissera parabeln $y=2x^2$ <br><br>
Varje punkt på parabeln $y=2x^2$ har dubbelt så stort $y$-värde än vad motsvarande punkt med samma $x$-värde har på parabeln $y=x^2$. Parabeln $y=2x^2$ är expanderad med faktorn $2$ i $y$-led jämfört med $y=x^2$. Varje punkt på parabeln $y=2x^2$ har dubbelt så stort $y$-värde än vad motsvarande punkt med samma $x$-värde har på parabeln $y=x^2$. Parabeln $y=2x^2$ är expanderad med faktorn $2$ i $y$-led jämfört med $y=x^2$.
</ol> </ol>
 +<br><br><br><br><br><br><br><br><br>
</div> </div>

Versionen från 24 april 2007 kl. 09.50

Innehåll

2.3 Andragradsuttryck

Innehåll:

  • Kvadratkomplettering
  • Andragradsekvationer
  • Faktorisering

Läromål:

Efter detta avsnitt ska du ha lärt dig att:

  • Kvadratkomplettera andragradsuttryck.
  • Lösa andragradsekvationer med kvadratkomplettering (ej färdig formel) och veta hur man kontrollerar svaret.
  • Fakorisera andragradsuttryck (när det är möjligt).
  • Direkt lösa faktoriserade eller nästan faktoriserade andragradsekvationer.
  • Bestämma det minsta/största värde ett andragradsuttryck antar.

Övningar

Teori

Andragradsekvationer

En andragradsekvation är en ekvation som kan skrivas som

$$x^2+px+q=0$$

där $x$ är den obekanta och $p$ och $q$ är konstanter.


Enklare typer av andra gradsekvationer kan vi lösa direkt genom roturdragning.

Ekvationen $x^2=a$ där $a$ är ett postivt tal har två lösningar (rötter) $x=\sqrt{a}$ och $x=-\sqrt{a}$.

Exempel 1

  1. $x^2 = 4 \quad$ har rötterna $x=\sqrt{4} = 2$ och $x=-\sqrt{4}= -2$

  2. $2x^2=18 \quad$ skrivs om till $x^2=9$ och har rötterna $x=\sqrt9 = 3$ och $x=-\sqrt9 = -3$.

  3. $3x^2-15=0 \quad$ kan skrivas som $x^2=5$ och har rötterna $x=\sqrt5 \approx 2,236$ och $x=-\sqrt5 \approx -2,236$.

  4. $9x^2+25=0\quad$ saknar lösningar eftersom vänsterledet kommer alltid att vara större än eller lika med $25$ oavsett hur $x$ väljs (kvadraten $x^2$ är alltid större eller lika med noll).

Exempel 2

  1. Lös ekvationen $(x-1)^2 = 16$.

    Genom att betrakta $x-1$ som obekant ger rotutdragning att ekvationen har två lösningar:
    • $x-1 =\sqrt{16} = 4$ vilket ger att $x=1+4=5$
    • $x-1 = -\sqrt{16} = -4$ vilket ger att $x=1-4=-3$

  2. Lös ekvationen $2(x+1)^2 -8=0$.

    Flytta över termen $8$ till högerledet och dela båda led med $2$, $$(x+1)^2=4 \; \mbox{.}$$ Rotutdragning ger att:
    • $x+1 =\sqrt{4} = 2, \quad \mbox{d.v.s.} \quad x=-1+2=1$
    • $x+1 = -\sqrt{4} = -2, \quad \mbox{d.v.s.} \quad x=-1-2=-3$

För att lösa allmänna andragradsekvationer använder vi en teknik som kallas kvadratkomplettering

Om vi betraktar kvaderingsregeln

$$x^2 + 2ax + a^2 = (a+x)^2$$

och subtraherar $a^2$ från båda led så får vi

Kvadratkomplettering: $$x^2 +2ax = (x+a)^2 -a^2$$

Detta är formeln för kvadratkomplettering.

Exempel 3

  1. Lös ekvationen $x^2 +2x -8=0$.

    De två termerna $x^2+2x$ kvadratkompletteras (använd $a=1$ i formeln) $$\underline{x^2+2x} -8 = \underline{(x+1)^2-1^2} -8 = (x+1)^2-9$$ där understrykningen visar vilka termer som är inblandade i kvadratkompletteringen. Ekvationen kan därför skrivas som $$(x+1)^2 -9 = 0$$ vilken vi löser med rotutdragning
    • $x+1 =\sqrt{9} = 3$ och därmed $x=-1+3=2$
    • $x+1 =\sqrt{9} = 3$ och därmed $x=-1-3=-4$

  2. Lös ekvationen $2x^2 -2x - \displaystyle \frac{2}{3} = 0$.

    Dividera båda led med 2 $$x^2-x-\frac{3}{4}$$ Vänsterledet kvadratkompletteras (använd $a=\frac{1}{2}$) $$\underline{x^2-x} -\frac{3}{4} = \underline{\left(x-\frac{1}{2}\right)^2 - \left(-\frac{1}{2}\right)^2} -\frac{3}{4}= \left(x-\frac{1}{2}\right)^2 -1$$ och detta ger oss ekvationen $$\left(x-\frac{1}{2}\right)^2 - 1=0 \; \mbox{.}$$ Rotutdragning ger att:
    • $x-\displaystyle \frac{1}{2} =\sqrt{1} = 1, \quad \mbox{d.v.s.} \quad x=\displaystyle \frac{1}{2}+1=\displaystyle \frac{3}{2}$
    • $x-\displaystyle \frac{1}{2}= -\sqrt{1} = -1, \quad \mbox{d.v.s.} \quad x=\displaystyle \frac{1}{2}-1= -\displaystyle \frac{1}{2}$

Tips:

Tänk på att man alltid kan pröva lösningar till en ekvation genom att sätta in värdet och se om likheten blir uppfylld. Man gör detta för att upptäcka eventuella slarvfel. För exemplet ovan har vi två fall att pröva. Vi kallar vänster- och högerleden för VL respektive HL:

x = 0 medför

$ \mbox{VL} = 0^2 - 4\cdot0 = 0 = \mbox{HL} $

x = 4 medför $ \mbox{VL} = 4^2 - 4\cdot4 = 0 = \mbox{HL} $

I båda fallen kommer vi fram till VL = HL. Ekvationen är alltså uppfylld i båda fallen. x = 0 och x = 4 är lösningar till ekvationen.

Med kvadratkomplettering går det att visa att den allmänna andragradsekvationen

$$x^2+px+q=0$$

har lösningarna

$$x = - \displaystyle\frac{p}{2} \pm \sqrt{\left(\displaystyle\frac{p}{2}\right)^2-q}$$

förutsatt att uttrycket under rottecknet inte är negativt.

Ibland kan man faktorisera ekvationer och direkt se vilka lösningarna är.

Exempel 4

Exempeltext, använd nedanstående numrering

  1. Lös ekvationen $x^2-4x=0$.

    I vänsterledet kan vi bryta ut ett $x$ $$x(x-4)=0$$ Ekvationens vänsterled blir noll, vilket ger oss två lösningar
    • $x =0, \; \mbox{eller}$
    • $x-4=0 \quad \mbox{d.v.s.} \quad x=4\; \mbox{.}$

Parabler

Funktionerna $$y=x^2-2x+5$$ $$y=4-3x^2$$ $$y=\frac{1}{5}x^2 +3x$$

är exempel på andragradsfunktioner. Allmänt kan en andragradsfunktion skrivas som

$$y=ax^2+bx+c$$

där $a$, $b$ och $c$ är konstanter och där $a\ne0$.

Grafen till en andragradsfunktion kallas för en parabel och figurerna visar utseendet för två typexempel $y=x^2$ och $y=-x^2$.

Bild: figur 3.1.1b och 3.1.2b

Eftersom uttrycket $x^2$ är som minst när $x=0$ har parabeln $y=x^2$ ett maximum för $x=0$.

Notera också att parablerna ovan är symmetriska kring $y$-axeln eftersom värdet på $x^2$ inte beror på vilket tecken $x$ har.

Exempel 5

  1. Skissera parabeln $y=x^2-2$

    Jämfört med parabeln $y=x^2$ har punkter på parabeln $y=x^2-2$ $y$-värden som är två enheter mindre d.v.s. parabeln är förskjuten $2$ enheter neråt i $y$-led.

    Bild: figur 3.1.3b

  2. Skissera parabeln $y=(x-2)^2$

    På parabeln $y=x-2)^2$ behöver vi välja $x$-värden två enheter större jämfört med parabeln $y=x^2$ för att få motsvarande $y$-värden. Alltså är parabeln $y=(x-2)^2$ förskjuten två enheter åt höger jämfört med $y=x^2$.

    Bild: figur 3.1.4b

  1. Skissera parabeln $y=2x^2$

    Varje punkt på parabeln $y=2x^2$ har dubbelt så stort $y$-värde än vad motsvarande punkt med samma $x$-värde har på parabeln $y=x^2$. Parabeln $y=2x^2$ är expanderad med faktorn $2$ i $y$-led jämfört med $y=x^2$.










Med kvaratkomplettering kan vi behandla alla typer av parabler.

Exempel 6

Skissera parabeln $y=x^2+2x+2$.


Om högerledet kvadratkompletteras $$x^2 +2x+2 = (x+1)^2 -1^2 +2 = (x+1)^2+1$$ så ser vi från det resulterande uttrycket $y= (x+1)^2+1$ att parabeln är förskjuten en enhet åt vänster i $x$-led jämfört med $y=x^2$ (eftersom det står $(x+1)^2$ istället för $x^2$) och en enhet uppåt i $y$-led.

Bild: figur 3.1.5b

Exempel 7

Bestäm var parabeln $y=x^2-4x+3$ skär $x$-axeln.

En punkt ligger på $x$-axeln om dess $y$-koordinat är noll, och de punkter på parabeln som har $y=0$ har en $x$-koordinat som uppfyller ekvationen $$x^2-4x+3$$ Vänsterledet kvadratkompletteras $$x^2-4x+3=(x-2)^2-2^2+3=(x-2)^2-1$$ och detta ger ekvationen $$(x-2)^2= 1 \; \mbox{.}$$ Efter rotutdragning får vi lösningarna:

  • $x-2 =\sqrt{1} = 1, \quad \mbox{d.v.s.} \quad x=2+1=3$
  • $x-2 = -\sqrt{1} = -1, \quad \mbox{d.v.s.} \quad x=2-1=1$

Parabeln skär $x$-axeln i punkterna $(1,0)$ och $(3,0)$.

Bild: figur 3.1.6b

Exempel 8

Bestäm det minsta värdet som uttrycket $x^2+18x+19$ antar

Vi kvadratkompletterar $$x^2 +8x+19=(x+4)^2 -4^2 +19 = (x+4)^2 +3$$ och då ser vi att uttrycket blir som minst lika med $3$ eftersom kvadraten $(x+4)^2$ alltid är större eller lika med $0$ oavsett vad $x$ är.

I figuren till höger ser vi att hela parabeln $y=x^2+8x+19$ ligger ovanför $x$-axeln och har ett minimumvärde $3$ när $x=4$.

Bild: figur 3.1.7b


Råd för inläsning

Tänk på att:

Att ställa upp ekvationer är som att översätta från ett språk till ett annat. Denna jämförelse användes av Newton i hans Arithmetica Universalis. Kanske kan den bidra till att öka förståelsen för de svårigheter som både studenter och lärare ställs inför, ibland.

Lägg ner mycket tid på algebra! Algebra är matematikens alfabet. När du väl har förstått algebra, kommer din förståelse av statistik, yta, volym och geometri vara mycket större.


Lästips

för dig som vill fördjupa dig ytterligare eller skulle vilja ha en längre förklaring

Läs mer om andragradsekvationer på engelska Wikipedia

Läs mer om andragradsekvationer i MathWorld

101 uses of a quadratic equation - by Chris Budd and Chris Sangwin


Länktips

Experimentera - När väger ekvationens led lika?

Träna på andragradsekvationer och slå ditt personliga rekord.


© Copyright 2006, KTH Matematik




Personliga verktyg