Processing Math: 72%
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath

4.3 Övningar

Förberedande kurs i matematik 1

(Skillnad mellan versioner)
Hoppa till: navigering, sök
Rad 77: Rad 77:
För en spetsig vinkel <math>\,v\,</math> i en triangel gäller att <math>\,\sin{v}=\displaystyle \frac{5}{7}\,</math>. Bestäm <math>\,\cos{v}\,</math> och <math>\,\tan{v}\,</math>.
För en spetsig vinkel <math>\,v\,</math> i en triangel gäller att <math>\,\sin{v}=\displaystyle \frac{5}{7}\,</math>. Bestäm <math>\,\cos{v}\,</math> och <math>\,\tan{v}\,</math>.
</div>{{#NAVCONTENT:Svar|Svar 4.3:5|Lösning |Lösning 4.3:5}}
</div>{{#NAVCONTENT:Svar|Svar 4.3:5|Lösning |Lösning 4.3:5}}
 +
 +
===Övning 4.3:6===
 +
<div class="ovning">
 +
{| width="100%" cellspacing="10px"
 +
|a)
 +
|width="100%" | Bestäm <math>\ \sin{v}\ </math> och <math>\ \tan{v}\ </math> om <math>\ \cos{v}=\displaystyle \frac{3}{4}\ </math> och <math>\ \displaystyle \frac{3\pi}{2} \leq v \leq 2\pi\,</math>.
 +
|-
 +
|b)
 +
|width="100%" | Bestäm <math>\ \cos{v}\ </math> och <math>\ \tan{v}\ </math> om <math>\ \sin{v}=\displaystyle \frac{3}{10}\ </math> och <math>\,v\,</math> ligger i den andra kvadranten.
 +
|-
 +
|c)
 +
|width="100%" | Bestäm <math>\ \sin{v}\ </math> och <math>\ \cos{v}\ </math> om <math>\ \tan{v}=3\ </math> och <math>\ \pi \leq v \leq \displaystyle \frac{3\pi}{2}\,</math>.
 +
|}
 +
</div>{{#NAVCONTENT:Svar|Svar 4.3:6|Lösning a |Lösning 4.3:6a|Lösning b |Lösning 4.3:6b|Lösning c |Lösning 4.3:6c}}

Versionen från 3 april 2008 kl. 09.00

       Teori          Övningar      

Övning 4.3:1

Bestäm de vinklar v mellan 2 och 2 som uppfyller

a) cosv=cos5 b) sinv=sin7 c) tanv=tan72

Övning 4.3:2

Bestäm de vinklar v mellan 0 och som uppfyller

a) cosv=cos23 b) cosv=cos57

Övning 4.3:3

Antag att 2v2 och att sinv=a. Uttryck med hjälp av a

a) sin(v) b) sin(v)
c) cosv d) sin2v 
e) cos2+v  f) sin3+v 

Övning 4.3:4

Antag att 0v och att cosv=b. Uttryck med hjälp av b

a) sin2v b) sinv
c) sin2v d) cos2v
e) sinv+4  f) cosv3 

Övning 4.3:5

För en spetsig vinkel v i en triangel gäller att sinv=75. Bestäm cosv och tanv.

Övning 4.3:6

a) Bestäm \displaystyle \ \sin{v}\ och \displaystyle \ \tan{v}\ om \displaystyle \ \cos{v}=\displaystyle \frac{3}{4}\ och \displaystyle \ \displaystyle \frac{3\pi}{2} \leq v \leq 2\pi\,.
b) Bestäm \displaystyle \ \cos{v}\ och \displaystyle \ \tan{v}\ om \displaystyle \ \sin{v}=\displaystyle \frac{3}{10}\ och \displaystyle \,v\, ligger i den andra kvadranten.
c) Bestäm \displaystyle \ \sin{v}\ och \displaystyle \ \cos{v}\ om \displaystyle \ \tan{v}=3\ och \displaystyle \ \pi \leq v \leq \displaystyle \frac{3\pi}{2}\,.