Processing Math: 81%
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

4.3 Övningar

Förberedande kurs i matematik 1

(Skillnad mellan versioner)
Hoppa till: navigering, sök
Nuvarande version (6 maj 2010 kl. 12.45) (redigera) (ogör)
(Länkar in Ja/Nej-frågor)
 
(7 mellanliggande versioner visas inte.)
Rad 4: Rad 4:
{{Mall:Ej vald flik|[[4.3 Trigonometriska samband|Teori]]}}
{{Mall:Ej vald flik|[[4.3 Trigonometriska samband|Teori]]}}
{{Mall:Vald flik|[[4.3 Övningar|Övningar]]}}
{{Mall:Vald flik|[[4.3 Övningar|Övningar]]}}
 +
{{Mall:Ej vald flik|[[4.3 Ja eller Nej?|Ja/Nej?]]}}
| style="border-bottom:1px solid #000" width="100%"|  
| style="border-bottom:1px solid #000" width="100%"|  
|}
|}
Rad 97: Rad 98:
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
-
|width="100%" | <math>\sin{x}=\displaystyle \frac{2}{3}\,</math>,<math>\ \sin{y}=\displaystyle \frac{1}{3}\ </math> och <math>\,x\,$, $\,y\,</math> är vinklar i första kvadranten..
+
|width="100%" | <math>\sin{x}=\displaystyle \frac{2}{3}\,</math>,<math>\ \sin{y}=\displaystyle \frac{1}{3}\ </math> och <math>\,x\,</math>, <math> \,y\,</math> är vinklar i första kvadranten.
|-
|-
|b)
|b)
Rad 124: Rad 125:
===Övning 4.3:9===
===Övning 4.3:9===
<div class="ovning">
<div class="ovning">
-
Visa "Feynmans likhet"
+
{| width="100%" cellspacing="10px"
 +
|
 +
|width="100%" | Visa "Morries formel"
|-
|-
 +
|
 +
|width="100%" |<center> <math>\cos 20^\circ \cdot \cos 40^\circ \cdot \cos 80^\circ = \displaystyle\frac{1}{8}\,\mbox{.}</math> </center>
|-
|-
-
<math>\cos 20^\circ \cdot \cos 40^\circ \cdot \cos 80^\circ = \displaystyle\frac{1}{8}\,\mbox{.}</math>
+
|
-
|-
+
|width="100%" |(Ledtr&aring;d: Anv&auml;nd formeln f&ouml;r dubbla vinkeln på <math>\,\sin 160^\circ\,</math>.)
-
(Ledtr&aring;d: Anv&auml;nd formeln f&ouml;r dubbla vinkeln på <math>\,\sin 160^\circ\,</math>.)
+
|}
</div>{{#NAVCONTENT:Lösning |Lösning 4.3:9}}
</div>{{#NAVCONTENT:Lösning |Lösning 4.3:9}}

Nuvarande version

       Teori          Övningar          Ja/Nej?      

Övning 4.3:1

Bestäm de vinklar v mellan 2 och 2 som uppfyller

a) cosv=cos5 b) sinv=sin7 c) tanv=tan72

Övning 4.3:2

Bestäm de vinklar v mellan 0 och som uppfyller

a) cosv=cos23 b) cosv=cos57

Övning 4.3:3

Antag att 2v2 och att sinv=a. Uttryck med hjälp av a

a) sin(v) b) sin(v)
c) cosv d) sin2v 
e) cos2+v  f) sin3+v 

Övning 4.3:4

Antag att 0v och att cosv=b. Uttryck med hjälp av b

a) sin2v b) sinv
c) sin2v d) cos2v
e) sinv+4  f) cosv3 

Övning 4.3:5

För en spetsig vinkel v i en triangel gäller att sinv=75. Bestäm cosv och tanv.

Övning 4.3:6

a) Bestäm  sinv  och  tanv  om  cosv=43  och  23v2.
b) Bestäm  cosv  och  tanv  om  sinv=310  och v ligger i den andra kvadranten.
c) Bestäm  sinv  och  cosv  om  tanv=3  och  v23.

Övning 4.3:7

Bestäm  sin(x+y)  om

a) sinx=32, siny=31  och x, \displaystyle \,y\, är vinklar i första kvadranten.
b) \displaystyle \cos{x}=\displaystyle \frac{2}{5}\,, \displaystyle \ \cos{y}=\displaystyle \frac{3}{5}\ och \displaystyle \,x\,, \displaystyle \,y\, är vinklar i första kvadranten.

Övning 4.3:8

Visa följande trigonometriska samband

a) \displaystyle \tan^2v=\displaystyle\frac{\sin^2v}{1-\sin^2v}
b) \displaystyle \displaystyle \frac{1}{\cos v}-\tan v=\frac{\cos v}{1+\sin v}
c) \displaystyle \tan\displaystyle\frac{u}{2}=\frac{\sin u}{1+\cos u}
d) \displaystyle \displaystyle\frac{\cos (u+v)}{\cos u \cos v}= 1- \tan u \tan v

Övning 4.3:9

Visa "Morries formel"
\displaystyle \cos 20^\circ \cdot \cos 40^\circ \cdot \cos 80^\circ = \displaystyle\frac{1}{8}\,\mbox{.}
(Ledtråd: Använd formeln för dubbla vinkeln på \displaystyle \,\sin 160^\circ\,.)