3.3 Exercises

From Förberedande kurs i matematik 1

Jump to: navigation, search
       Theory          Exercises      


Exercise 3.3:1

Solve the following equations for \displaystyle x.

a) \displaystyle 10^x=1\,000 b) \displaystyle 10^x=0\textrm{.}1
c) \displaystyle \displaystyle \frac{1}{10^x}=100 d) \displaystyle \displaystyle \frac{1}{10^x}=0\textrm{.}000\,1

Exercise 3.3:2

Calculate

a) \displaystyle \lg{ 0\textrm{.}1} b) \displaystyle \lg{ 10\,000} c) \displaystyle \lg {0\textrm{.}001} d) \displaystyle \lg {1}
e) \displaystyle 10^{\lg{2}} f) \displaystyle \lg{10^3} g) \displaystyle 10^{-\lg{0\textrm{.}1}} h) \displaystyle \lg{\displaystyle \frac{1}{10^2}}

Exercise 3.3:3

Calculate

a) \displaystyle \log_2{8} b) \displaystyle \log_9{\displaystyle \frac{1}{3}} c) \displaystyle \log_2{0\textrm{.}125}
d) \displaystyle \log_3{\left(9\cdot3^{1/3}\right)} e) \displaystyle 2^{\log_{\scriptstyle2}{4}} f) \displaystyle \log_2{4}+\log_2{\displaystyle \frac{1}{16}}
g) \displaystyle \log_3{12}-\log_3{4} h) \displaystyle \log_a{\bigl(a^2\sqrt{a}\,\bigr)}

Exercise 3.3:4

Simplify

a) \displaystyle \lg{50}-\lg{5} b) \displaystyle \lg{23}+\lg{\displaystyle \frac{1}{23}} c) \displaystyle \lg{27^{1/3}}+\displaystyle \frac{\lg{3}}{2}+\lg{\displaystyle \frac{1}{9}}

Exercise 3.3:5

Simplify

a) \displaystyle \ln{e^3}+\ln{e^2} b) \displaystyle \ln{8}-\ln{4}-\ln{2} c) \displaystyle (\ln{1})\cdot e^2
d) \displaystyle \ln{e}-1 e) \displaystyle \ln{\displaystyle \frac{1}{e^2}} f) \displaystyle \left(e^{\ln{e}}\right)^2

Exercise 3.3:6

Use the calculator on the right to calculate the following to three decimal places. The button LN signifies the natural logarithm with base e.

a) \displaystyle \log_3{4}
b) \displaystyle \lg{46}
c) \displaystyle \log_3{\log_2{(3^{118})}}