2.3 Exercises
From Förberedande kurs i matematik 1
m (Robot: Automated text replacement (-Svar +Answer)) |
m (Robot: Automated text replacement (-Lösning +Solution)) |
||
Line 20: | Line 20: | ||
|width="25%" | <math>x^2+5x+3</math> | |width="25%" | <math>x^2+5x+3</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT:Answer|Answer 2.3:1|Solution a| | + | </div>{{#NAVCONTENT:Answer|Answer 2.3:1|Solution a|Solution 2.3:1a|Solution b|Solution 2.3:1b|Solution c|Solution 2.3:1c|Solution d|Solution 2.3:1d}} |
===Exercise 2.3:2=== | ===Exercise 2.3:2=== | ||
Line 40: | Line 40: | ||
|width="33%" | <math>3x^2-10x+8=0</math> | |width="33%" | <math>3x^2-10x+8=0</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT:Answer|Answer 2.3:2|Solution a| | + | </div>{{#NAVCONTENT:Answer|Answer 2.3:2|Solution a|Solution 2.3:2a|Solution b|Solution 2.3:2b|Solution c|Solution 2.3:2c|Solution d|Solution 2.3:2d|Solution e|Solution 2.3:2e|Solution f|Solution 2.3:2f}} |
===Exercise 2.3:3=== | ===Exercise 2.3:3=== | ||
Line 61: | Line 61: | ||
|width="50%" | <math>x(x^2-2x)+x(2-x)=0</math> | |width="50%" | <math>x(x^2-2x)+x(2-x)=0</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT:Answer|Answer 2.3:3|Solution a| | + | </div>{{#NAVCONTENT:Answer|Answer 2.3:3|Solution a|Solution 2.3:3a|Solution b|Solution 2.3:3b|Solution c|Solution 2.3:3c|Solution d|Solution 2.3:3d|Solution e|Solution 2.3:3e|Solution f|Solution 2.3:3f}} |
===Exercise 2.3:4=== | ===Exercise 2.3:4=== | ||
Line 76: | Line 76: | ||
|width="100" | <math>3\ </math> and <math>\ \sqrt{3}</math> | |width="100" | <math>3\ </math> and <math>\ \sqrt{3}</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT:Answer|Answer 2.3:4|Solution a| | + | </div>{{#NAVCONTENT:Answer|Answer 2.3:4|Solution a|Solution 2.3:4a|Solution b|Solution 2.3:4b|Solution c|Solution 2.3:4c}} |
===Exercise 2.3:5=== | ===Exercise 2.3:5=== | ||
Line 90: | Line 90: | ||
|width="100" | The equation <math>\,x^2+4x+b=0\,</math> has one root at <math>\,x=1\,</math>. Determine the value of the constant <math>\,b\,</math>. | |width="100" | The equation <math>\,x^2+4x+b=0\,</math> has one root at <math>\,x=1\,</math>. Determine the value of the constant <math>\,b\,</math>. | ||
|} | |} | ||
- | </div>{{#NAVCONTENT:Answer|Answer 2.3:5|Solution a| | + | </div>{{#NAVCONTENT:Answer|Answer 2.3:5|Solution a|Solution 2.3:5a|Solution b|Solution 2.3:5b|Solution c|Solution 2.3:5c}} |
===Exercise 2.3:6=== | ===Exercise 2.3:6=== | ||
Line 103: | Line 103: | ||
|width="33%" | <math>x^2-5x+7</math> | |width="33%" | <math>x^2-5x+7</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT:Answer|Answer 2.3:6|Solution a| | + | </div>{{#NAVCONTENT:Answer|Answer 2.3:6|Solution a|Solution 2.3:6a|Solution b|Solution 2.3:6b|Solution c|Solution 2.3:6c}} |
Line 117: | Line 117: | ||
|width="33%" | <math>x^2+x+1</math> | |width="33%" | <math>x^2+x+1</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT:Answer|Answer 2.3:7|Solution a| | + | </div>{{#NAVCONTENT:Answer|Answer 2.3:7|Solution a|Solution 2.3:7a|Solution b|Solution 2.3:7b|Solution c|Solution 2.3:7c}} |
===Exercise 2.3:8=== | ===Exercise 2.3:8=== | ||
Line 130: | Line 130: | ||
|width="33%" | <math>f(x)=x^2-6x+11</math> | |width="33%" | <math>f(x)=x^2-6x+11</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT:Answer|Answer 2.3:8|Solution a| | + | </div>{{#NAVCONTENT:Answer|Answer 2.3:8|Solution a|Solution 2.3:8a|Solution b|Solution 2.3:8b|Solution c|Solution 2.3:8c}} |
===Exercise 2.3:9=== | ===Exercise 2.3:9=== | ||
Line 143: | Line 143: | ||
|width="33%" | <math>y=3x^2-12x+9</math> | |width="33%" | <math>y=3x^2-12x+9</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT:Answer|Answer 2.3:9|Solution a| | + | </div>{{#NAVCONTENT:Answer|Answer 2.3:9|Solution a|Solution 2.3:9a|Solution b|Solution 2.3:9b|Solution c|Solution 2.3:9c}} |
===Exercise 2.3:10=== | ===Exercise 2.3:10=== | ||
Line 160: | Line 160: | ||
|} | |} | ||
- | </div>{{#NAVCONTENT:Answer|Answer 2.3:10|Solution a| | + | </div>{{#NAVCONTENT:Answer|Answer 2.3:10|Solution a|Solution 2.3:10a|Solution b|Solution 2.3:10b|Solution c|Solution 2.3:10c|Solution d|Solution 2.3:10d}} |
Revision as of 11:21, 9 September 2008
Theory | Exercises |
Exercise 2.3:1
Complete the square of the expressions
a) | | b) | | c) | | d) | |
Answer | Solution a | Solution b | Solution c | Solution d
Exercise 2.3:2
Solve the following second order equations by completing the square
a) | | b) | | c) | |
d) | | e) | | f) | |
Answer | Solution a | Solution b | Solution c | Solution d | Solution e | Solution f
Exercise 2.3:3
Solve the following equations directly
a) | | b) | |
c) | | d) | |
e) | | f) | |
Answer | Solution a | Solution b | Solution c | Solution d | Solution e | Solution f
Exercise 2.3:4
Determine a second-degree equation which has roots
a) | |
b) | ![]() ![]() |
c) | ![]() |
Answer | Solution a | Solution b | Solution c
Exercise 2.3:5
a) | Determine a second-degree equation which only has |
b) | Determine a value of |
c) | The equation |
Answer | Solution a | Solution b | Solution c
Exercise 2.3:6
Determine the smallest value that the following polynomial can take
a) | | b) | | c) | |
Answer | Solution a | Solution b | Solution c
Exercise 2.3:7
Determine the largest value that the following polynomials can take.
a) | | b) | \displaystyle -x^2+3x-4 | c) | \displaystyle x^2+x+1 |
Answer | Solution a | Solution b | Solution c
Exercise 2.3:8
Sketch the graph of the following functions
a) | \displaystyle f(x)=x^2+1 | b) | \displaystyle f(x)=(x-1)^2+2 | c) | \displaystyle f(x)=x^2-6x+11 |
Answer | Solution a | Solution b | Solution c
Exercise 2.3:9
Find all the points where the x-axis and the following curves intersect.
a) | \displaystyle y=x^2-1 | b) | \displaystyle y=x^2-5x+6 | c) | \displaystyle y=3x^2-12x+9 |
Answer | Solution a | Solution b | Solution c
Exercise 2.3:10
In the xy-plane, draw in all the points whose coordinates \displaystyle \,(x,y)\, satisfy
a) | \displaystyle y \geq x^2\ and \displaystyle \ y \leq 1 | b) | \displaystyle y \leq 1-x^2\ and \displaystyle \ x \geq 2y-3 |
c) | \displaystyle 1 \geq x \geq y^2 | d) | \displaystyle x^2 \leq y \leq x |
Answer | Solution a | Solution b | Solution c | Solution d