3.3 Logarithms

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
m (Robot: Automated text replacement (-{{Vald flik +{{Selected tab))
m (Robot: Automated text replacement (-{{Fristående formel +{{Displayed math))
Line 31: Line 31:
We often use powers with base <math>10</math> to represent large and small numbers, for example,
We often use powers with base <math>10</math> to represent large and small numbers, for example,
-
{{Fristående formel||<math>\begin{align*}
+
{{Displayed math||<math>\begin{align*}
10^3 &= 10 \cdot 10 \cdot 10 = 1000\,,\\
10^3 &= 10 \cdot 10 \cdot 10 = 1000\,,\\
10^{-2} &= \frac{1}{10 \cdot 10} = \frac{1}{100} = 0\textrm{.}01\,\mbox{.}
10^{-2} &= \frac{1}{10 \cdot 10} = \frac{1}{100} = 0\textrm{.}01\,\mbox{.}
Line 50: Line 50:
:::The logarithm of a number <math>y</math> is designated by <math>\lg y</math> and is the exponent in the blue box which satisfies the equality
:::The logarithm of a number <math>y</math> is designated by <math>\lg y</math> and is the exponent in the blue box which satisfies the equality
-
{{Fristående formel||<math>10^{\ \bbox[#AAEEFF,2pt]{\,\phantom{a}\,}} = y\,\mbox{.} </math>}}
+
{{Displayed math||<math>10^{\ \bbox[#AAEEFF,2pt]{\,\phantom{a}\,}} = y\,\mbox{.} </math>}}
Note that <math>y</math> must be a positive number for the logarithm <math>\lg y</math> to be defined, since there is no power of 10 that evaluates to a negative number or for that matter zero .
Note that <math>y</math> must be a positive number for the logarithm <math>\lg y</math> to be defined, since there is no power of 10 that evaluates to a negative number or for that matter zero .
Line 171: Line 171:
If we know that <math>35 \approx 10^{\,1\textrm{.}5441}</math> and <math>54 \approx 10^{\,1\textrm{.}7324}</math> (i.e. <math>\lg 35 \approx 1\textrm{.}5441</math> and <math>\lg 54 \approx 1\textrm{.}7324</math>) then we can calculate that
If we know that <math>35 \approx 10^{\,1\textrm{.}5441}</math> and <math>54 \approx 10^{\,1\textrm{.}7324}</math> (i.e. <math>\lg 35 \approx 1\textrm{.}5441</math> and <math>\lg 54 \approx 1\textrm{.}7324</math>) then we can calculate that
-
{{Fristående formel||<math>
+
{{Displayed math||<math>
35 \cdot 54 \approx 10^{\,1\textrm{.}5441} \cdot 10^{\,1\textrm{.}7324}
35 \cdot 54 \approx 10^{\,1\textrm{.}5441} \cdot 10^{\,1\textrm{.}7324}
= 10^{\,1\textrm{.}5441 + 1\textrm{.}7324}
= 10^{\,1\textrm{.}5441 + 1\textrm{.}7324}
Line 178: Line 178:
and we then know that <math>10^{\,3\textrm{.}2765} \approx 1890</math> (i.e. <math>\lg 1890 \approx 3\textrm{.}2765</math>) thus we have managed to calculate the product
and we then know that <math>10^{\,3\textrm{.}2765} \approx 1890</math> (i.e. <math>\lg 1890 \approx 3\textrm{.}2765</math>) thus we have managed to calculate the product
-
{{Fristående formel||<math>35 \cdot 54 = 1890</math>}}
+
{{Displayed math||<math>35 \cdot 54 = 1890</math>}}
and this just by adding together exponents <math>1\textrm{.}5441</math> and <math>1\textrm{.}7324</math>.
and this just by adding together exponents <math>1\textrm{.}5441</math> and <math>1\textrm{.}7324</math>.
Line 185: Line 185:
This is an example of a logarithmic law which says that
This is an example of a logarithmic law which says that
-
{{Fristående formel||<math>\log (ab) = \log a + \log b</math>}}
+
{{Displayed math||<math>\log (ab) = \log a + \log b</math>}}
This stems from the fact that on the one hand,
This stems from the fact that on the one hand,
-
{{Fristående formel||<math>
+
{{Displayed math||<math>
a\cdot b = 10^{\textstyle\log a} \cdot 10^{\textstyle\log b}
a\cdot b = 10^{\textstyle\log a} \cdot 10^{\textstyle\log b}
= \left\{ \mbox{laws of exponents} \right\}
= \left\{ \mbox{laws of exponents} \right\}
Line 196: Line 196:
and on the other hand,
and on the other hand,
-
{{Fristående formel||<math>
+
{{Displayed math||<math>
a\cdot b = 10^{\,\bbox[#AAEEFF,1pt]{\,\log (ab)\,}}\,\mbox{.}</math>}}
a\cdot b = 10^{\,\bbox[#AAEEFF,1pt]{\,\log (ab)\,}}\,\mbox{.}</math>}}
Line 202: Line 202:
<div class="regel">
<div class="regel">
-
{{Fristående formel||<math>\begin{align*}
+
{{Displayed math||<math>\begin{align*}
\log(ab) &= \log a + \log b,\\[4pt]
\log(ab) &= \log a + \log b,\\[4pt]
\log\frac{a}{b} &= \log a - \log b,\\[4pt]
\log\frac{a}{b} &= \log a - \log b,\\[4pt]
Line 269: Line 269:
<br>
<br>
By definition, the <math>\lg 5</math> is a number that satisfies the equality
By definition, the <math>\lg 5</math> is a number that satisfies the equality
-
{{Fristående formel||<math>10^{\lg 5} = 5\,\mbox{.}</math>}}
+
{{Displayed math||<math>10^{\lg 5} = 5\,\mbox{.}</math>}}
Take the natural logarithm ( ln ) of both sides.
Take the natural logarithm ( ln ) of both sides.
-
{{Fristående formel||<math>\ln 10^{\lg 5} = \ln 5\,\mbox{.}</math>}}
+
{{Displayed math||<math>\ln 10^{\lg 5} = \ln 5\,\mbox{.}</math>}}
With the help of the logarithm law <math>\ln a^b = b \ln a</math> the left-hand side can be written as <math>\lg 5 \cdot \ln 10</math> and the equality becomes
With the help of the logarithm law <math>\ln a^b = b \ln a</math> the left-hand side can be written as <math>\lg 5 \cdot \ln 10</math> and the equality becomes
-
{{Fristående formel||<math>\lg 5 \cdot \ln 10 = \ln 5\,\mbox{.}</math>}}
+
{{Displayed math||<math>\lg 5 \cdot \ln 10 = \ln 5\,\mbox{.}</math>}}
Now divide both sides by <math>\ln 10</math> giving the answer
Now divide both sides by <math>\ln 10</math> giving the answer
-
{{Fristående formel||<math>
+
{{Displayed math||<math>
\lg 5 = \frac{\ln 5}{\ln 10}
\lg 5 = \frac{\ln 5}{\ln 10}
\qquad (\approx 0\textrm{.}699\,,
\qquad (\approx 0\textrm{.}699\,,
Line 288: Line 288:
<br>
<br>
Using the definition of a logarithm one has that <math>\log_2 100</math> formally satisfies
Using the definition of a logarithm one has that <math>\log_2 100</math> formally satisfies
-
{{Fristående formel||<math>2^{\log_{\scriptstyle 2} 100} = 100</math>}}
+
{{Displayed math||<math>2^{\log_{\scriptstyle 2} 100} = 100</math>}}
and taking the 10-logarithm (lg) of both sides, one gets
and taking the 10-logarithm (lg) of both sides, one gets
-
{{Fristående formel||<math>
+
{{Displayed math||<math>
\lg 2^{\log_{\scriptstyle 2} 100} = \lg 100\,\mbox{.}</math>}}
\lg 2^{\log_{\scriptstyle 2} 100} = \lg 100\,\mbox{.}</math>}}
Since <math>\lg a^b = b \lg a</math> one gets <math>\lg 2^{\log_2 100} = \log_{\scriptstyle 2} 100 \cdot \lg 2</math> and the right-hand side can be simplified to <math>\lg 100 = 2</math>. This gives the equality
Since <math>\lg a^b = b \lg a</math> one gets <math>\lg 2^{\log_2 100} = \log_{\scriptstyle 2} 100 \cdot \lg 2</math> and the right-hand side can be simplified to <math>\lg 100 = 2</math>. This gives the equality
-
{{Fristående formel||<math>
+
{{Displayed math||<math>
\log_{\scriptstyle 2} 100 \cdot \lg 2 = 2\,\mbox{.}</math>}}
\log_{\scriptstyle 2} 100 \cdot \lg 2 = 2\,\mbox{.}</math>}}
Finally, dividing by <math>\lg 2</math> gives that
Finally, dividing by <math>\lg 2</math> gives that
-
{{Fristående formel||<math>
+
{{Displayed math||<math>
\log_{\scriptstyle 2} 100 = \frac{2}{\lg 2}
\log_{\scriptstyle 2} 100 = \frac{2}{\lg 2}
\qquad ({}\approx 6\textrm{.}64\,,
\qquad ({}\approx 6\textrm{.}64\,,
Line 308: Line 308:
The general formula for changing from one base <math>a</math> to another base <math>b</math> can be derived in the same way
The general formula for changing from one base <math>a</math> to another base <math>b</math> can be derived in the same way
-
{{Fristående formel||<math>
+
{{Displayed math||<math>
\log_{\scriptstyle\,a} x
\log_{\scriptstyle\,a} x
= \frac{\log_{\scriptstyle\, b} x}{\log_{\scriptstyle\, b} a}
= \frac{\log_{\scriptstyle\, b} x}{\log_{\scriptstyle\, b} a}
Line 314: Line 314:
If one wants to change the base of a power, one can do this by using logarithms. For instance, if we want to write <math> 2^5 </math> using the base 10 one first writes 2 as a power with the base 10;
If one wants to change the base of a power, one can do this by using logarithms. For instance, if we want to write <math> 2^5 </math> using the base 10 one first writes 2 as a power with the base 10;
-
{{Fristående formel||<math>2 = 10^{\lg 2}</math>}}
+
{{Displayed math||<math>2 = 10^{\lg 2}</math>}}
and then using one of the laws of exponents
and then using one of the laws of exponents
-
{{Fristående formel||<math>
+
{{Displayed math||<math>
2^5 = (10^{\lg 2})^5 = 10^{5\cdot \lg 2}
2^5 = (10^{\lg 2})^5 = 10^{5\cdot \lg 2}
\quad ({}\approx 10^{1\textrm{.}505}\,)\,\mbox{.}</math>}}
\quad ({}\approx 10^{1\textrm{.}505}\,)\,\mbox{.}</math>}}
Line 329: Line 329:
<br>
<br>
First, we write 10 as a power of ''e'',
First, we write 10 as a power of ''e'',
-
{{Fristående formel||<math>10 = e^{\ln 10}</math>}}
+
{{Displayed math||<math>10 = e^{\ln 10}</math>}}
and then use the laws of exponents
and then use the laws of exponents
-
{{Fristående formel||<math>
+
{{Displayed math||<math>
10^x = (e^{\ln 10})^x = e^{\,x \cdot \ln 10}
10^x = (e^{\ln 10})^x = e^{\,x \cdot \ln 10}
\approx e^{2\textrm{.}3 x}\,\mbox{.}</math>}}</li>
\approx e^{2\textrm{.}3 x}\,\mbox{.}</math>}}</li>
Line 340: Line 340:
<br>
<br>
The number <math>e</math> can be written as <math>e=10^{\lg e}</math> and therefore
The number <math>e</math> can be written as <math>e=10^{\lg e}</math> and therefore
-
{{Fristående formel||<math>
+
{{Displayed math||<math>
e^a = (10^{\lg e})^a
e^a = (10^{\lg e})^a
= 10^{\,a \cdot \lg e}
= 10^{\,a \cdot \lg e}

Revision as of 13:55, 10 September 2008

       Theory          Exercises      

Contents:

  • Logarithms
  • Fundamental Laws of Logarithms

Learning outcomes:

After this section, you will have learned:

  • The concepts of base and exponent.
  • The meaning of the notation \displaystyle \ln, \displaystyle \lg, \displaystyle \log and \displaystyle \log_{a}.
  • To calculate simple logarithmic expressions using the definition of a logarithm.
  • That logarithms are only defined for positive numbers.
  • The meaning of the number \displaystyle e.
  • To use the laws of logarithms to simplify logarithmic expressions.
  • To know when the laws of logarithms are valid.
  • To express a logarithm in terms of a logarithm with a different base.

Logarithms to the base 10

We often use powers with base \displaystyle 10 to represent large and small numbers, for example,

\displaystyle \begin{align*}
   10^3 &= 10 \cdot 10 \cdot 10 = 1000\,,\\
   10^{-2} &= \frac{1}{10 \cdot 10} = \frac{1}{100} = 0\textrm{.}01\,\mbox{.}
 \end{align*}

If one only considers the exponents one can state that

"the exponent for 1000 is 3", or
"the exponent for 0.01 is -2".

This is how logarithms are defined. One formalises this as follows:

"The logarithm of 1000 is 3", which is written as \displaystyle \lg 1000 = 3,
"The logarithm of 0.01 is -2", which is written as \displaystyle \lg 0\textrm{.}01 = -2.

More generally, one says:

The logarithm of a number \displaystyle y is designated by \displaystyle \lg y and is the exponent in the blue box which satisfies the equality
\displaystyle 10^{\ \bbox[#AAEEFF,2pt]{\,\phantom{a}\,}} = y\,\mbox{.}

Note that \displaystyle y must be a positive number for the logarithm \displaystyle \lg y to be defined, since there is no power of 10 that evaluates to a negative number or for that matter zero .

Example 1

  1. \displaystyle \lg 100000 = 5\quad because \displaystyle 10^{\,\bbox[#AAEEFF,1pt]{\scriptstyle\,5\vphantom{,}\,}} = 100\,000.
  2. \displaystyle \lg 0\textrm{.}0001 = -4\quad because \displaystyle 10^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,-4\vphantom{,}\,}} = 0\textrm{.}0001.
  3. \displaystyle \lg \sqrt{10} = \frac{1}{2}\quad because \displaystyle 10^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,1/2\,}} = \sqrt{10}.
  4. \displaystyle \lg 1 = 0\quad because \displaystyle 10^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,0\vphantom{,}\,}} = 1.
  5. \displaystyle \lg 10^{78} = 78\quad because \displaystyle 10^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,78\vphantom{,}\,}} = 10^{78}.
  6. \displaystyle \lg 50 \approx 1\textrm{.}699\quad because \displaystyle 10^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,1\textrm{.}699\,}} \approx 50.
  7. \displaystyle \lg (-10) does not exist because \displaystyle 10^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,a\vphantom{b,}\,}} can never be -10 regardless of how \displaystyle a is chosen.

In the penultimate example, one can easily understand that \displaystyle \lg 50 must lie somewhere between 1 and 2 since \displaystyle 10^1 < 50 < 10^2, but to obtain a more precise value of the irrational number \displaystyle \lg 50 = 1\textrm{.}69897\ldots one needs in practice, a calculator (or table.)

Example 2

  1. \displaystyle 10^{\textstyle\,\lg 100} = 100
  2. \displaystyle 10^{\textstyle\,\lg a} = a
  3. \displaystyle 10^{\textstyle\,\lg 50} = 50


Different bases

One can imagine logarithms, which use a base other than 10 (except 1!). One must clearly indicate which number is used as a base for a logarithm. If one uses a base such as 2 one uses the notation \displaystyle \log_{\,2} for a "base-2 logarithm".

Example 3

  1. \displaystyle \log_{\,2} 8 = 3\quad because \displaystyle 2^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,3\vphantom{,}\,}} = 8.
  2. \displaystyle \log_{\,2} 2 = 1\quad because \displaystyle 2^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,1\vphantom{,}\,}} = 2.
  3. \displaystyle \log_{\,2} 1024 = 10\quad because \displaystyle 2^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,10\vphantom{,}\,}} = 1024.
  4. \displaystyle \log_{\,2}\frac{1}{4} = -2\quad because \displaystyle 2^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,-2\vphantom{,}\,}} = \frac{1}{2^2} = \frac{1}{4}.

One deals with logarithms which have other bases in the same way.

Example 4

  1. \displaystyle \log_{\,3} 9 = 2\quad because \displaystyle 3^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,2\vphantom{,}\,}} = 9.
  2. \displaystyle \log_{\,5} 125 = 3\quad because \displaystyle 5^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,3\vphantom{,}\,}} = 125.
  3. \displaystyle \log_{\,4} \frac{1}{16} = -2\quad because \displaystyle 4^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,-2\vphantom{,}\,}} = \frac{1}{4^2} = \frac{1}{16}.
  4. \displaystyle \log_{\,b} \frac{1}{\sqrt{b}} = -\frac{1}{2}\quad as \displaystyle b^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,-1/2\,}} = \frac{1}{b^{1/2}} = \frac{1}{\sqrt{b}} (if \displaystyle b>0 and \displaystyle b\not=1).

If the base 10 is used, one rarely writes \displaystyle \log_{\,10}, but as we have previously seen one uses the notation lg, or simply log, which appears on many calculators.


The natural logarithms

In practice there are two bases that are commonly used for logarithms, 10 and the number \displaystyle e \displaystyle ({}\approx 2\textrm{.}71828 \ldots\,). Logarithms using the base e are called natural logarithms and one uses the notation ln instead of \displaystyle \log_{\,e}.

Example 5

  1. \displaystyle \ln 10 \approx 2{,}3\quad because \displaystyle e^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,2{,}3\,}} \approx 10.
  2. \displaystyle \ln e = 1\quad because \displaystyle e^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,1\vphantom{,}\,}} = e.
  3. \displaystyle \ln\frac{1}{e^3} = -3\quad because \displaystyle e^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,-3\vphantom{,}\,}} = \frac{1}{e^3}.
  4. \displaystyle \ln 1 = 0\quad because \displaystyle e^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,0\vphantom{,}\,}} = 1.
  5. If \displaystyle y= e^{\,a} then \displaystyle a = \ln y.
  6. \displaystyle e^{\,\bbox[#AAEEFF,1pt]{\,\ln 5\vphantom{,}\,}} = 5
  7. \displaystyle e^{\,\bbox[#AAEEFF,1pt]{\,\ln x\vphantom{,}\,}} = x

Most advanced calculators usually have buttons for 10-logarithms and natural logarithms.


Laws of Logarithms

Between the years 1617 and 1624 Henry Biggs published a table of logarithms for all integers up to 20 000, and in 1628 Adriaan Vlacq expanded the table for all integers up to 100 000. The reason such an enormous amount of work was invested in producing these tables is that with the help of logarithms one can multiply numbers together just by adding their logarithms (addition goes much faster to perform than multiplication).

Example 6

Calculate \displaystyle \,35\cdot 54.

If we know that \displaystyle 35 \approx 10^{\,1\textrm{.}5441} and \displaystyle 54 \approx 10^{\,1\textrm{.}7324} (i.e. \displaystyle \lg 35 \approx 1\textrm{.}5441 and \displaystyle \lg 54 \approx 1\textrm{.}7324) then we can calculate that

\displaystyle
 35 \cdot 54 \approx 10^{\,1\textrm{.}5441} \cdot 10^{\,1\textrm{.}7324}
             = 10^{\,1\textrm{.}5441 + 1\textrm{.}7324}
             = 10^{\,3\textrm{.}2765}

and we then know that \displaystyle 10^{\,3\textrm{.}2765} \approx 1890 (i.e. \displaystyle \lg 1890 \approx 3\textrm{.}2765) thus we have managed to calculate the product

\displaystyle 35 \cdot 54 = 1890

and this just by adding together exponents \displaystyle 1\textrm{.}5441 and \displaystyle 1\textrm{.}7324.

This is an example of a logarithmic law which says that

\displaystyle \log (ab) = \log a + \log b

This stems from the fact that on the one hand,

\displaystyle
 a\cdot b = 10^{\textstyle\log a} \cdot 10^{\textstyle\log b}
          = \left\{ \mbox{laws of exponents} \right\}
          = 10^{\,\bbox[#AAEEFF,1pt]{\,\log a+\log b\,}}

and on the other hand,

\displaystyle
 a\cdot b = 10^{\,\bbox[#AAEEFF,1pt]{\,\log (ab)\,}}\,\mbox{.}

By exploiting the laws of exponents in this way can we obtain the corresponding laws of logarithms:

\displaystyle \begin{align*}
   \log(ab) &= \log a + \log b,\\[4pt]
   \log\frac{a}{b} &= \log a - \log b,\\[4pt]
   \log a^b &= b\cdot \log a\,\mbox{.}\\
 \end{align*}

The laws of logarithms apply regardless of base.

Example 7

  1. \displaystyle \lg 4 + \lg 7 = \lg(4 \cdot 7) = \lg 28
  2. \displaystyle \lg 6 - \lg 3 = \lg\frac{6}{3} = \lg 2
  3. \displaystyle 2 \cdot \lg 5 = \lg 5^2 = \lg 25
  4. \displaystyle \lg 200 = \lg(2 \cdot 100) = \lg 2 + \lg 100 = \lg 2 + 2

Example 8

  1. \displaystyle \lg 9 + \lg 1000 - \lg 3 + \lg 0{,}001 = \lg 9 + 3 - \lg 3 - 3 = \lg 9- \lg 3 = \lg \displaystyle \frac{9}{3} = \lg 3
  2. \displaystyle \ln\frac{1}{e} + \ln \sqrt{e} = \ln\left(\frac{1}{e} \cdot \sqrt{e}\,\right) = \ln\left( \frac{1}{(\sqrt{e}\,)^2} \cdot \sqrt{e}\,\right) = \ln\frac{1}{\sqrt{e}}
    \displaystyle \phantom{\ln\frac{1}{e} + \ln \sqrt{e}}{} = \ln e^{-1/2} = -\frac{1}{2} \cdot \ln e =-\frac{1}{2} \cdot 1 = -\frac{1}{2}\vphantom{\biggl(}
  3. \displaystyle \log_2 36 - \frac{1}{2} \log_2 81 = \log_2 (6 \cdot 6) - \frac{1}{2} \log_2 (9 \cdot 9)
    \displaystyle \phantom{\log_2 36 - \frac{1}{2} \log_2 81}{} = \log_2 (2\cdot 2 \cdot 3 \cdot 3) - \frac{1}{2} \log_2 (3 \cdot 3 \cdot 3 \cdot 3)
    \displaystyle \phantom{\log_2 36 - \frac{1}{2} \log_2 81}{} = \log_2 (2^2 \cdot 3^2) - \frac{1}{2} \log_2 (3^4)\vphantom{\Bigl(}
    \displaystyle \phantom{\log_2 36 - \frac{1}{2} \log_2 81}{} = \log_2 2^2 + \log_2 3^2 - \frac{1}{2} \log_2 3^4
    \displaystyle \phantom{\log_2 36 - \frac{1}{2} \log_2 81}{} = 2 \log_2 2 + 2 \log_2 3 - \frac{1}{2} \cdot 4 \log_2 3
    \displaystyle \phantom{\log_2 36 - \frac{1}{2} \log_2 81}{} = 2\cdot 1 + 2 \log_2 3 - 2 \log_2 3 = 2\vphantom{\Bigl(}
  4. \displaystyle \lg a^3 - 2 \lg a + \lg\frac{1}{a} = 3 \lg a - 2 \lg a + \lg a^{-1}
    \displaystyle \phantom{\lg a^3 - 2 \lg a + \lg\frac{1}{a}}{} = (3-2)\lg a + (-1) \lg a = \lg a - \lg a = 0


Changing the base

It sometimes can be a good idea to express a logarithm as a logarithm having another base.

Example 9

  1. Express \displaystyle \lg 5 as a natural logarithm.

    By definition, the \displaystyle \lg 5 is a number that satisfies the equality
    \displaystyle 10^{\lg 5} = 5\,\mbox{.}

    Take the natural logarithm ( ln ) of both sides.

    \displaystyle \ln 10^{\lg 5} = \ln 5\,\mbox{.}

    With the help of the logarithm law \displaystyle \ln a^b = b \ln a the left-hand side can be written as \displaystyle \lg 5 \cdot \ln 10 and the equality becomes

    \displaystyle \lg 5 \cdot \ln 10 = \ln 5\,\mbox{.}

    Now divide both sides by \displaystyle \ln 10 giving the answer

    \displaystyle
     \lg 5 = \frac{\ln 5}{\ln 10}
     \qquad (\approx 0\textrm{.}699\,,
     \quad\text{dvs.}\ 10^{0\textrm{.}699} \approx 5)\,\mbox{.}
    

  2. Express the 2-logarithm of 100 as a 10-logarithm lg.

    Using the definition of a logarithm one has that \displaystyle \log_2 100 formally satisfies
    \displaystyle 2^{\log_{\scriptstyle 2} 100} = 100

    and taking the 10-logarithm (lg) of both sides, one gets

    \displaystyle
     \lg 2^{\log_{\scriptstyle 2} 100} = \lg 100\,\mbox{.}
    

    Since \displaystyle \lg a^b = b \lg a one gets \displaystyle \lg 2^{\log_2 100} = \log_{\scriptstyle 2} 100 \cdot \lg 2 and the right-hand side can be simplified to \displaystyle \lg 100 = 2. This gives the equality

    \displaystyle
     \log_{\scriptstyle 2} 100 \cdot \lg 2 = 2\,\mbox{.}
    

    Finally, dividing by \displaystyle \lg 2 gives that

    \displaystyle
     \log_{\scriptstyle 2} 100 = \frac{2}{\lg 2}
     \qquad ({}\approx 6\textrm{.}64\,,
     \quad\text{that is}\ 2^{6\textrm{.}64}\approx 100 )\,\mbox{.}
    

The general formula for changing from one base \displaystyle a to another base \displaystyle b can be derived in the same way

\displaystyle
 \log_{\scriptstyle\,a} x
  = \frac{\log_{\scriptstyle\, b} x}{\log_{\scriptstyle\, b} a}
  \,\mbox{.}

If one wants to change the base of a power, one can do this by using logarithms. For instance, if we want to write \displaystyle 2^5 using the base 10 one first writes 2 as a power with the base 10;

\displaystyle 2 = 10^{\lg 2}

and then using one of the laws of exponents

\displaystyle
 2^5 = (10^{\lg 2})^5 = 10^{5\cdot \lg 2}
 \quad ({}\approx 10^{1\textrm{.}505}\,)\,\mbox{.}

Example 10

  1. Write \displaystyle 10^x using the base e.

    First, we write 10 as a power of e,
    \displaystyle 10 = e^{\ln 10}

    and then use the laws of exponents

    \displaystyle
     10^x = (e^{\ln 10})^x = e^{\,x \cdot \ln 10}
          \approx e^{2\textrm{.}3 x}\,\mbox{.}
    
  2. Write \displaystyle e^{\,a} using the base 10.

    The number \displaystyle e can be written as \displaystyle e=10^{\lg e} and therefore
    \displaystyle
     e^a = (10^{\lg e})^a
         = 10^{\,a \cdot \lg e}
         \approx 10^{\,0\textrm{.}434a}\,\mbox{.}
    


Exercises

Study advice

The basic and final tests

After you have read the text and worked through the exercises, you should do the basic and final tests to pass this section. You can find the link to the tests in your student lounge.


Keep in mind that:

You may need to spend much time studying logarithms.

Logarithms usually are dealt with summarily in high school. Therefore, many college students tend to encounter problems when it comes to calculations with logarithms.


Reviews

For those of you who want to deepen your studies or need more detailed explanations consider the following references:

Learn more about logarithms in English Wikipedia

Learn more about the number e in The MacTutor History of Mathematics archive


Useful web sites

Experiment with logarithms and powers

Play logarithm Memory

Help the frog to jump onto his water-lily leaf in the "log" game