Processing Math: Done
Solution 4.4:6c
From Förberedande kurs i matematik 1
(Difference between revisions)
m (Lösning 4.4:6c moved to Solution 4.4:6c: Robot: moved page) |
|||
Line 1: | Line 1: | ||
- | {{ | + | If we use the trigonometric relation |
- | < | + | <math>\text{sin }\left( -x \right)=-\text{sin }x</math>, the equation can be rewritten as |
- | {{ | + | |
+ | |||
+ | <math>\sin 2x=\sin \left( -x \right)</math> | ||
+ | |||
+ | |||
+ | In exercise 4.4:5a, we saw that an equality of the type | ||
+ | |||
+ | |||
+ | <math>\sin u=\sin v\quad </math> | ||
+ | |||
+ | |||
+ | is satisfied if | ||
+ | |||
+ | |||
+ | <math>u=v+2n\pi </math> | ||
+ | or | ||
+ | <math>u=\pi -v+2n\pi </math> | ||
+ | |||
+ | |||
+ | where | ||
+ | <math>n\text{ }</math> | ||
+ | is an arbitrary integer. The consequence of this is that the solutions to the equation satisfy | ||
+ | |||
+ | |||
+ | <math>2x=-x+2n\pi </math> | ||
+ | or | ||
+ | <math>2x=\pi -\left( -x \right)+2n\pi </math> | ||
+ | |||
+ | |||
+ | i.e. | ||
+ | |||
+ | |||
+ | <math>3x=2n\pi </math> | ||
+ | or | ||
+ | <math>x=\pi +2n\pi </math> | ||
+ | |||
+ | |||
+ | The solutions to the equation are thus | ||
+ | |||
+ | |||
+ | <math>\left\{ \begin{array}{*{35}l} | ||
+ | x=\frac{2n\pi }{3} \\ | ||
+ | x=\pi +2n\pi \\ | ||
+ | \end{array} \right.</math> | ||
+ | ( | ||
+ | <math>n\text{ }</math> | ||
+ | an arbitrary integer) |
Revision as of 11:54, 1 October 2008
If we use the trigonometric relation
−x
=−sin x
−x
In exercise 4.4:5a, we saw that an equality of the type
is satisfied if
−v+2n
where
−
−x
+2n
i.e.
+2n
The solutions to the equation are thus
x=32n
x=
+2n