Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Solution 4.4:6c

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
(Ny sida: {{NAVCONTENT_START}} <center> Bild:4_4_6c.gif </center> {{NAVCONTENT_STOP}})
Current revision (06:55, 14 October 2008) (edit) (undo)
m
 
(3 intermediate revisions not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
If we use the trigonometric relation <math>\sin (-x) = -\sin x</math>, the equation can be rewritten as
-
<center> [[Bild:4_4_6c.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
{{Displayed math||<math>\sin 2x = \sin (-x)\,\textrm{.}</math>}}
 +
 
 +
In exercise 4.4:5a, we saw that an equality of the type
 +
 
 +
{{Displayed math||<math>\sin u = \sin v</math>}}
 +
 
 +
is satisfied if
 +
 
 +
{{Displayed math||<math>u = v+2n\pi\qquad\text{or}\qquad u = \pi-v+2n\pi\,,</math>}}
 +
 
 +
where ''n'' is an arbitrary integer. The consequence of this is that the solutions to the equation satisfy
 +
 
 +
{{Displayed math||<math>2x = -x+2n\pi\qquad\text{or}\qquad 2x = \pi-(-x)+2n\pi\,,</math>}}
 +
 
 +
i.e.
 +
 
 +
{{Displayed math||<math>3x = 2n\pi\qquad\text{or}\qquad x = \pi +2n\pi\,\textrm{.}</math>}}
 +
 
 +
The solutions to the equation are thus
 +
 
 +
{{Displayed math||<math>\left\{\begin{align}
 +
x &= \frac{2n\pi}{3}\,,\\[5pt]
 +
x &= \pi + 2n\pi\,,
 +
\end{align}\right.</math>}}
 +
 
 +
where ''n'' is an arbitrary integer.

Current revision

If we use the trigonometric relation sin(x)=sinx, the equation can be rewritten as

sin2x=sin(x).

In exercise 4.4:5a, we saw that an equality of the type

sinu=sinv

is satisfied if

u=v+2noru=v+2n

where n is an arbitrary integer. The consequence of this is that the solutions to the equation satisfy

2x=x+2nor2x=(x)+2n

i.e.

3x=2norx=+2n.

The solutions to the equation are thus

xx=32n=+2n

where n is an arbitrary integer.