3.3 Logarithms

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
Line 60: Line 60:
{{Displayed math||<math>10^{\ \bbox[#AAEEFF,2pt]{\,x\,}} = y\,\mbox{.} </math>}}
{{Displayed math||<math>10^{\ \bbox[#AAEEFF,2pt]{\,x\,}} = y\,\mbox{.} </math>}}
-
Note that <math>y</math> must be a positive number for the logarithm <math>\lg y</math> to be defined, since there is no power of 10 that evaluates to a negative number or for that matter zero .
+
Note that <math>y</math> must be a positive number for the logarithm <math>\lg y</math> to be defined, since there is no power of 10 that evaluates to a negative number, or for that matter zero .
<div class="exempel">
<div class="exempel">
Line 86: Line 86:
</div>
</div>
-
In the penultimate example, one can easily understand that <math>\lg 50</math> must lie somewhere between 1 and 2 since <math>10^1 < 50 < 10^2</math>, but to obtain a more precise value of the irrational number <math>\lg 50 = 1\textrm{.}69897\ldots</math> one needs in practice, a calculator (or table.)
+
In the penultimate example, one can easily understand that <math>\lg 50</math> must lie somewhere between 1 and 2 since <math>10^1 < 50 < 10^2</math>. However, in practice to obtain a more precise value of the irrational number <math>\lg 50 = 1\textrm{.}69897\ldots</math> one needs a calculator (or table).
<div class="exempel">
<div class="exempel">
Line 101: Line 101:
== Different bases ==
== Different bases ==
-
One can imagine logarithms, which use a base other than 10 (except 1!). One must clearly indicate which number is used as a base for a logarithm. If one uses a base such as 2 one uses the notation <math>\log_{\,2}</math> for a "base-2 logarithm".
+
We can define logarithms with respect to a base other than 10. We must clearly indicate which number is used as the base for the logarithm. If we use a base such as 2 we write <math>\log_{\,2}</math> to mean a logarithm with base 2.
<div class="exempel">
<div class="exempel">
Line 119: Line 119:
</div>
</div>
-
One deals with logarithms which have other bases in the same way.
+
We deal with logarithms which have other bases in the same way.
<div class="exempel">
<div class="exempel">
Line 138: Line 138:
</div>
</div>
-
If the base 10 is used, one rarely writes <math>\log_{\,10}</math>, but as we have previously seen one uses the notation lg, or simply log, which appears on many calculators.
+
If the base 10 is used, one rarely writes <math>\log_{\,10}</math>, but as we have previously seen we use the notation <math> lg </math>, or simply <math>log</math>. These symbols appear on many calculators. We should also note that it makes no sense to define logarithms with base <math>1</math>.
==The natural logarithms ==
==The natural logarithms ==
-
In practice there are two bases that are commonly used for logarithms, 10 and the number <math>e</math> <math>({}\approx 2\textrm{.}71828 \ldots\,)</math>. Logarithms using the base ''e'' are called '' natural logarithms'' and one uses the notation ln instead of <math>\log_{\,e}</math>.
+
In practice there are two bases that are commonly used for logarithms, 10 and the number <math>e</math> <math>({}\approx 2\textrm{.}71828 \ldots\,)</math>. Logarithms using the base ''e'' are called '' natural logarithms'' and we use the notation <math>ln</math> instead of <math>\log_{\,e}</math>.
<div class="exempel">
<div class="exempel">
Line 149: Line 149:
<ol type="a">
<ol type="a">
-
<li><math> \ln 10 \approx 2{,}3\quad</math> because <math>
+
<li><math> \ln 10 \approx 2{\textrm{.}}3\quad</math> because <math>
-
e^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,2{,}3\,}} \approx 10</math>.</li>
+
e^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,2{\textrm{.}}3\,}} \approx 10</math>.</li>
<li><math> \ln e = 1\quad</math> because <math>
<li><math> \ln e = 1\quad</math> because <math>
e^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,1\vphantom{,}\,}} = e</math>.</li>
e^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,1\vphantom{,}\,}} = e</math>.</li>
Line 164: Line 164:
</div>
</div>
-
Most advanced calculators usually have buttons for 10-logarithms and natural logarithms.
+
Most advanced calculators have buttons for 10-logarithms and natural logarithms.
== Laws of Logarithms ==
== Laws of Logarithms ==
-
Between the years 1617 and 1624 Henry Biggs published a table of logarithms for all integers up to 20 000, and in 1628 Adriaan Vlacq expanded the table for all integers up to 100 000. The reason such an enormous amount of work was invested in producing these tables is that with the help of logarithms one can multiply numbers together just by adding their logarithms (addition goes much faster to perform than multiplication).
+
Between the years 1617 and 1624 Henry Biggs published a table of logarithms for all integers up to 20 000, and in 1628 Adriaan Vlacq expanded the table for all integers up to 100 000. The reason such an enormous amount of work was invested in producing these tables is that with the help of logarithms one can multiply numbers together just by adding their logarithms (addition is a much faster calculation than multiplication).
<div class="exempel">
<div class="exempel">
Line 182: Line 182:
35 \cdot 54 \approx 10^{\,1\textrm{.}5441} \cdot 10^{\,1\textrm{.}7324}
35 \cdot 54 \approx 10^{\,1\textrm{.}5441} \cdot 10^{\,1\textrm{.}7324}
= 10^{\,1\textrm{.}5441 + 1\textrm{.}7324}
= 10^{\,1\textrm{.}5441 + 1\textrm{.}7324}
-
= 10^{\,3\textrm{.}2765}</math>}}
+
= 10^{\,3\textrm{.}2765}</math>.}}
-
and we then know that <math>10^{\,3\textrm{.}2765} \approx 1890</math> (i.e. <math>\lg 1890 \approx 3\textrm{.}2765</math>) thus we have managed to calculate the product
+
Since <math>10^{\,3\textrm{.}2765} \approx 1890</math> (i.e. <math>\lg 1890 \approx 3\textrm{.}2765</math>), we have thus managed to calculate the product
{{Displayed math||<math>35 \cdot 54 = 1890</math>}}
{{Displayed math||<math>35 \cdot 54 = 1890</math>}}
-
and this just by adding together exponents <math>1\textrm{.}5441</math> and <math>1\textrm{.}7324</math>.
+
just by adding together the exponents <math>1\textrm{.}5441</math> and <math>1\textrm{.}7324</math>.
</div>
</div>
-
This is an example of a logarithmic law which says that
+
In the above example we have used a logarithmic law which states that
-
{{Displayed math||<math>\log (ab) = \log a + \log b</math>}}
+
{{Displayed math||<math>\log (ab) = \log a + \log b</math>,}}
-
This stems from the fact that on the one hand,
+
for all <math>a,b>0</math>. We can see that this is true by using the laws of exponents. Indeed,
{{Displayed math||<math>
{{Displayed math||<math>
Line 207: Line 207:
a\cdot b = 10^{\,\bbox[#AAEEFF,1pt]{\,\log (ab)\,}}\,\mbox{.}</math>}}
a\cdot b = 10^{\,\bbox[#AAEEFF,1pt]{\,\log (ab)\,}}\,\mbox{.}</math>}}
-
By exploiting the laws of exponents in this way can we obtain the corresponding ''laws of logarithms'':
+
so that we can see <math>\log (ab) = \log a + \log b</math>. By exploiting the laws of exponents in this way we can obtain the corresponding ''laws of logarithms'':
<div class="regel">
<div class="regel">
Line 213: Line 213:
\log(ab) &= \log a + \log b,\\[4pt]
\log(ab) &= \log a + \log b,\\[4pt]
\log\frac{a}{b} &= \log a - \log b,\\[4pt]
\log\frac{a}{b} &= \log a - \log b,\\[4pt]
-
\log a^b &= b\cdot \log a\,\mbox{.}\\
+
\log a^b &= b\cdot \log a\,\mbox{,}\\
\end{align*}</math>}}
\end{align*}</math>}}
</div>
</div>
-
 
+
for <math>a,b>0</math>. These laws hold regardless of the base we are working with.
-
The laws of logarithms apply regardless of base.
+
<div class="exempel">
<div class="exempel">
Line 234: Line 233:
<ol type="a">
<ol type="a">
-
<li><math>\lg 9 + \lg 1000 - \lg 3 + \lg 0{,}001 = \lg 9 + 3 - \lg 3 - 3
+
<li><math>\lg 9 + \lg 1000 - \lg 3 + \lg 0\textrm{.}001 = \lg 9 + 3 - \lg 3 - 3
= \lg 9- \lg 3 = \lg \displaystyle \frac{9}{3} = \lg 3</math></li>
= \lg 9- \lg 3 = \lg \displaystyle \frac{9}{3} = \lg 3</math></li>
<li><math>\ln\frac{1}{e} + \ln \sqrt{e}
<li><math>\ln\frac{1}{e} + \ln \sqrt{e}
Line 267: Line 266:
== Changing the base ==
== Changing the base ==
-
It sometimes can be a good idea to express a logarithm as a logarithm having another base.
+
It is sometimes a good idea to express a logarithm as a logarithm with respect to another base.
<div class="exempel">
<div class="exempel">
Line 282: Line 281:
{{Displayed math||<math>\ln 10^{\lg 5} = \ln 5\,\mbox{.}</math>}}
{{Displayed math||<math>\ln 10^{\lg 5} = \ln 5\,\mbox{.}</math>}}
-
With the help of the logarithm law <math>\ln a^b = b \ln a</math> the left-hand side can be written as <math>\lg 5 \cdot \ln 10</math> and the equality becomes
+
With the help of the logarithm law <math>\ln a^b = b \ln a</math>, the left-hand side can be written as <math>\lg 5 \cdot \ln 10</math> and the equality becomes
{{Displayed math||<math>\lg 5 \cdot \ln 10 = \ln 5\,\mbox{.}</math>}}
{{Displayed math||<math>\lg 5 \cdot \ln 10 = \ln 5\,\mbox{.}</math>}}
Line 296: Line 295:
<br>
<br>
Using the definition of a logarithm one has that <math>\log_2 100</math> formally satisfies
Using the definition of a logarithm one has that <math>\log_2 100</math> formally satisfies
-
{{Displayed math||<math>2^{\log_{\scriptstyle 2} 100} = 100</math>}}
+
{{Displayed math||<math>2^{\log_{\scriptstyle 2} 100} = 100</math>.}}
-
and taking the 10-logarithm (lg) of both sides, one gets
+
Taking the 10-logarithm of both sides, we get
{{Displayed math||<math>
{{Displayed math||<math>
\lg 2^{\log_{\scriptstyle 2} 100} = \lg 100\,\mbox{.}</math>}}
\lg 2^{\log_{\scriptstyle 2} 100} = \lg 100\,\mbox{.}</math>}}
-
Since <math>\lg a^b = b \lg a</math> one gets <math>\lg 2^{\log_2 100} = \log_{\scriptstyle 2} 100 \cdot \lg 2</math> and the right-hand side can be simplified to <math>\lg 100 = 2</math>. This gives the equality
+
Since <math>\lg a^b = b \lg a</math> we get <math>\lg 2^{\log_2 100} = \log_{\scriptstyle 2} 100 \cdot \lg 2</math>, and moreover the right-hand side can be simplified to <math>\lg 100 = 2</math>. Thus we see that
{{Displayed math||<math>
{{Displayed math||<math>
\log_{\scriptstyle 2} 100 \cdot \lg 2 = 2\,\mbox{.}</math>}}
\log_{\scriptstyle 2} 100 \cdot \lg 2 = 2\,\mbox{.}</math>}}
-
Finally, dividing by <math>\lg 2</math> gives that
+
Finally, dividing by <math>\lg 2</math> gives
{{Displayed math||<math>
{{Displayed math||<math>
\log_{\scriptstyle 2} 100 = \frac{2}{\lg 2}
\log_{\scriptstyle 2} 100 = \frac{2}{\lg 2}

Revision as of 20:08, 26 October 2008

       Theory          Exercises      

Contents:

  • Logarithms
  • Fundamental Laws of Logarithms

Learning outcomes:

After this section, you will have learned:

  • The concepts of base and exponent.
  • The meaning of the notation \displaystyle \ln, \displaystyle \lg, \displaystyle \log and \displaystyle \log_{a}.
  • To calculate simple logarithmic expressions using the definition of a logarithm.
  • That logarithms are only defined for positive numbers.
  • The meaning of the number \displaystyle e.
  • To use the laws of logarithms to simplify logarithmic expressions.
  • To know when the laws of logarithms are valid.
  • To express a logarithm in terms of a logarithm with a different base.

Logarithms to the base 10

We often use powers with base \displaystyle 10 to represent large and small numbers, for example

\displaystyle \begin{align*}
   10^3 &= 10 \cdot 10 \cdot 10 = 1000\,,\\
   10^{-2} &= \frac{1}{10 \cdot 10} = \frac{1}{100} = 0\textrm{.}01\,\mbox{.}
 \end{align*}

If we only consider the exponents, we can informally state that

"the exponent of 1000 is 3",

or

"the exponent of 0.01 is -2".

This is how logarithms are defined. We formalises this as follows:

"The logarithm of 1000 is 3",

which is written as \displaystyle \lg 1000 = 3, and

"The logarithm of 0.01 is -2",

which is written as \displaystyle \lg 0\textrm{.}01 = -2.

More generally, we say:

The logarithm of a number \displaystyle y is denoted by \displaystyle \lg y and is the real number \displaystyle x in the blue box which satisfies the equality
\displaystyle 10^{\ \bbox[#AAEEFF,2pt]{\,x\,}} = y\,\mbox{.}

Note that \displaystyle y must be a positive number for the logarithm \displaystyle \lg y to be defined, since there is no power of 10 that evaluates to a negative number, or for that matter zero .

Example 1

  1. \displaystyle \lg 100000 = 5\quad because \displaystyle 10^{\,\bbox[#AAEEFF,1pt]{\scriptstyle\,5\vphantom{,}\,}} = 100\,000.
  2. \displaystyle \lg 0\textrm{.}0001 = -4\quad because \displaystyle 10^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,-4\vphantom{,}\,}} = 0\textrm{.}0001.
  3. \displaystyle \lg \sqrt{10} = \frac{1}{2}\quad because \displaystyle 10^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,1/2\,}} = \sqrt{10}.
  4. \displaystyle \lg 1 = 0\quad because \displaystyle 10^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,0\vphantom{,}\,}} = 1.
  5. \displaystyle \lg 10^{78} = 78\quad because \displaystyle 10^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,78\vphantom{,}\,}} = 10^{78}.
  6. \displaystyle \lg 50 \approx 1\textrm{.}699\quad because \displaystyle 10^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,1\textrm{.}699\,}} \approx 50.
  7. \displaystyle \lg (-10) does not exist because \displaystyle 10^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,a\vphantom{b,}\,}} can never be -10 regardless of how \displaystyle a is chosen.

In the penultimate example, one can easily understand that \displaystyle \lg 50 must lie somewhere between 1 and 2 since \displaystyle 10^1 < 50 < 10^2. However, in practice to obtain a more precise value of the irrational number \displaystyle \lg 50 = 1\textrm{.}69897\ldots one needs a calculator (or table).

Example 2

  1. \displaystyle 10^{\textstyle\,\lg 100} = 100
  2. \displaystyle 10^{\textstyle\,\lg a} = a
  3. \displaystyle 10^{\textstyle\,\lg 50} = 50


Different bases

We can define logarithms with respect to a base other than 10. We must clearly indicate which number is used as the base for the logarithm. If we use a base such as 2 we write \displaystyle \log_{\,2} to mean a logarithm with base 2.

Example 3

  1. \displaystyle \log_{\,2} 8 = 3\quad because \displaystyle 2^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,3\vphantom{,}\,}} = 8.
  2. \displaystyle \log_{\,2} 2 = 1\quad because \displaystyle 2^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,1\vphantom{,}\,}} = 2.
  3. \displaystyle \log_{\,2} 1024 = 10\quad because \displaystyle 2^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,10\vphantom{,}\,}} = 1024.
  4. \displaystyle \log_{\,2}\frac{1}{4} = -2\quad because \displaystyle 2^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,-2\vphantom{,}\,}} = \frac{1}{2^2} = \frac{1}{4}.

We deal with logarithms which have other bases in the same way.

Example 4

  1. \displaystyle \log_{\,3} 9 = 2\quad because \displaystyle 3^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,2\vphantom{,}\,}} = 9.
  2. \displaystyle \log_{\,5} 125 = 3\quad because \displaystyle 5^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,3\vphantom{,}\,}} = 125.
  3. \displaystyle \log_{\,4} \frac{1}{16} = -2\quad because \displaystyle 4^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,-2\vphantom{,}\,}} = \frac{1}{4^2} = \frac{1}{16}.
  4. \displaystyle \log_{\,b} \frac{1}{\sqrt{b}} = -\frac{1}{2}\quad as \displaystyle b^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,-1/2\,}} = \frac{1}{b^{1/2}} = \frac{1}{\sqrt{b}} (if \displaystyle b>0 and \displaystyle b\not=1).

If the base 10 is used, one rarely writes \displaystyle \log_{\,10}, but as we have previously seen we use the notation \displaystyle lg , or simply \displaystyle log. These symbols appear on many calculators. We should also note that it makes no sense to define logarithms with base \displaystyle 1.


The natural logarithms

In practice there are two bases that are commonly used for logarithms, 10 and the number \displaystyle e \displaystyle ({}\approx 2\textrm{.}71828 \ldots\,). Logarithms using the base e are called natural logarithms and we use the notation \displaystyle ln instead of \displaystyle \log_{\,e}.

Example 5

  1. \displaystyle \ln 10 \approx 2{\textrm{.}}3\quad because \displaystyle e^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,2{\textrm{.}}3\,}} \approx 10.
  2. \displaystyle \ln e = 1\quad because \displaystyle e^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,1\vphantom{,}\,}} = e.
  3. \displaystyle \ln\frac{1}{e^3} = -3\quad because \displaystyle e^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,-3\vphantom{,}\,}} = \frac{1}{e^3}.
  4. \displaystyle \ln 1 = 0\quad because \displaystyle e^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,0\vphantom{,}\,}} = 1.
  5. If \displaystyle y= e^{\,a} then \displaystyle a = \ln y.
  6. \displaystyle e^{\,\bbox[#AAEEFF,1pt]{\,\ln 5\vphantom{,}\,}} = 5
  7. \displaystyle e^{\,\bbox[#AAEEFF,1pt]{\,\ln x\vphantom{,}\,}} = x

Most advanced calculators have buttons for 10-logarithms and natural logarithms.


Laws of Logarithms

Between the years 1617 and 1624 Henry Biggs published a table of logarithms for all integers up to 20 000, and in 1628 Adriaan Vlacq expanded the table for all integers up to 100 000. The reason such an enormous amount of work was invested in producing these tables is that with the help of logarithms one can multiply numbers together just by adding their logarithms (addition is a much faster calculation than multiplication).

Example 6

Calculate \displaystyle \,35\cdot 54.

If we know that \displaystyle 35 \approx 10^{\,1\textrm{.}5441} and \displaystyle 54 \approx 10^{\,1\textrm{.}7324} (i.e. \displaystyle \lg 35 \approx 1\textrm{.}5441 and \displaystyle \lg 54 \approx 1\textrm{.}7324) then we can calculate that

\displaystyle
 35 \cdot 54 \approx 10^{\,1\textrm{.}5441} \cdot 10^{\,1\textrm{.}7324}
             = 10^{\,1\textrm{.}5441 + 1\textrm{.}7324}
             = 10^{\,3\textrm{.}2765}.

Since \displaystyle 10^{\,3\textrm{.}2765} \approx 1890 (i.e. \displaystyle \lg 1890 \approx 3\textrm{.}2765), we have thus managed to calculate the product

\displaystyle 35 \cdot 54 = 1890

just by adding together the exponents \displaystyle 1\textrm{.}5441 and \displaystyle 1\textrm{.}7324.

In the above example we have used a logarithmic law which states that

\displaystyle \log (ab) = \log a + \log b,

for all \displaystyle a,b>0. We can see that this is true by using the laws of exponents. Indeed,

\displaystyle
 a\cdot b = 10^{\textstyle\log a} \cdot 10^{\textstyle\log b}
          = \left\{ \mbox{laws of exponents} \right\}
          = 10^{\,\bbox[#AAEEFF,1pt]{\,\log a+\log b\,}}

and on the other hand,

\displaystyle
 a\cdot b = 10^{\,\bbox[#AAEEFF,1pt]{\,\log (ab)\,}}\,\mbox{.}

so that we can see \displaystyle \log (ab) = \log a + \log b. By exploiting the laws of exponents in this way we can obtain the corresponding laws of logarithms:

\displaystyle \begin{align*}
   \log(ab) &= \log a + \log b,\\[4pt]
   \log\frac{a}{b} &= \log a - \log b,\\[4pt]
   \log a^b &= b\cdot \log a\,\mbox{,}\\
 \end{align*}

for \displaystyle a,b>0. These laws hold regardless of the base we are working with.

Example 7

  1. \displaystyle \lg 4 + \lg 7 = \lg(4 \cdot 7) = \lg 28
  2. \displaystyle \lg 6 - \lg 3 = \lg\frac{6}{3} = \lg 2
  3. \displaystyle 2 \cdot \lg 5 = \lg 5^2 = \lg 25
  4. \displaystyle \lg 200 = \lg(2 \cdot 100) = \lg 2 + \lg 100 = \lg 2 + 2

Example 8

  1. \displaystyle \lg 9 + \lg 1000 - \lg 3 + \lg 0\textrm{.}001 = \lg 9 + 3 - \lg 3 - 3 = \lg 9- \lg 3 = \lg \displaystyle \frac{9}{3} = \lg 3
  2. \displaystyle \ln\frac{1}{e} + \ln \sqrt{e} = \ln\left(\frac{1}{e} \cdot \sqrt{e}\,\right) = \ln\left( \frac{1}{(\sqrt{e}\,)^2} \cdot \sqrt{e}\,\right) = \ln\frac{1}{\sqrt{e}}
    \displaystyle \phantom{\ln\frac{1}{e} + \ln \sqrt{e}}{} = \ln e^{-1/2} = -\frac{1}{2} \cdot \ln e =-\frac{1}{2} \cdot 1 = -\frac{1}{2}\vphantom{\biggl(}
  3. \displaystyle \log_2 36 - \frac{1}{2} \log_2 81 = \log_2 (6 \cdot 6) - \frac{1}{2} \log_2 (9 \cdot 9)
    \displaystyle \phantom{\log_2 36 - \frac{1}{2} \log_2 81}{} = \log_2 (2\cdot 2 \cdot 3 \cdot 3) - \frac{1}{2} \log_2 (3 \cdot 3 \cdot 3 \cdot 3)
    \displaystyle \phantom{\log_2 36 - \frac{1}{2} \log_2 81}{} = \log_2 (2^2 \cdot 3^2) - \frac{1}{2} \log_2 (3^4)\vphantom{\Bigl(}
    \displaystyle \phantom{\log_2 36 - \frac{1}{2} \log_2 81}{} = \log_2 2^2 + \log_2 3^2 - \frac{1}{2} \log_2 3^4
    \displaystyle \phantom{\log_2 36 - \frac{1}{2} \log_2 81}{} = 2 \log_2 2 + 2 \log_2 3 - \frac{1}{2} \cdot 4 \log_2 3
    \displaystyle \phantom{\log_2 36 - \frac{1}{2} \log_2 81}{} = 2\cdot 1 + 2 \log_2 3 - 2 \log_2 3 = 2\vphantom{\Bigl(}
  4. \displaystyle \lg a^3 - 2 \lg a + \lg\frac{1}{a} = 3 \lg a - 2 \lg a + \lg a^{-1}
    \displaystyle \phantom{\lg a^3 - 2 \lg a + \lg\frac{1}{a}}{} = (3-2)\lg a + (-1) \lg a = \lg a - \lg a = 0


Changing the base

It is sometimes a good idea to express a logarithm as a logarithm with respect to another base.

Example 9

  1. Express \displaystyle \lg 5 as a natural logarithm.

    By definition, the \displaystyle \lg 5 is a number that satisfies the equality
    \displaystyle 10^{\lg 5} = 5\,\mbox{.}

    Take the natural logarithm ( ln ) of both sides.

    \displaystyle \ln 10^{\lg 5} = \ln 5\,\mbox{.}

    With the help of the logarithm law \displaystyle \ln a^b = b \ln a, the left-hand side can be written as \displaystyle \lg 5 \cdot \ln 10 and the equality becomes

    \displaystyle \lg 5 \cdot \ln 10 = \ln 5\,\mbox{.}

    Now divide both sides by \displaystyle \ln 10 giving the answer

    \displaystyle
     \lg 5 = \frac{\ln 5}{\ln 10}
     \qquad (\approx 0\textrm{.}699\,,
     \quad\text{dvs.}\ 10^{0\textrm{.}699} \approx 5)\,\mbox{.}
    

  2. Express the 2-logarithm of 100 as a 10-logarithm lg.

    Using the definition of a logarithm one has that \displaystyle \log_2 100 formally satisfies
    \displaystyle 2^{\log_{\scriptstyle 2} 100} = 100.

    Taking the 10-logarithm of both sides, we get

    \displaystyle
     \lg 2^{\log_{\scriptstyle 2} 100} = \lg 100\,\mbox{.}
    

    Since \displaystyle \lg a^b = b \lg a we get \displaystyle \lg 2^{\log_2 100} = \log_{\scriptstyle 2} 100 \cdot \lg 2, and moreover the right-hand side can be simplified to \displaystyle \lg 100 = 2. Thus we see that

    \displaystyle
     \log_{\scriptstyle 2} 100 \cdot \lg 2 = 2\,\mbox{.}
    

    Finally, dividing by \displaystyle \lg 2 gives

    \displaystyle
     \log_{\scriptstyle 2} 100 = \frac{2}{\lg 2}
     \qquad ({}\approx 6\textrm{.}64\,,
     \quad\text{that is}\ 2^{6\textrm{.}64}\approx 100 )\,\mbox{.}
    

The general formula for changing from one base \displaystyle a to another base \displaystyle b can be derived in the same way

\displaystyle
 \log_{\scriptstyle\,a} x
  = \frac{\log_{\scriptstyle\, b} x}{\log_{\scriptstyle\, b} a}
  \,\mbox{.}

If one wants to change the base of a power, one can do this by using logarithms. For instance, if we want to write \displaystyle 2^5 using the base 10 one first writes 2 as a power with the base 10;

\displaystyle 2 = 10^{\lg 2}

and then using one of the laws of exponents

\displaystyle
 2^5 = (10^{\lg 2})^5 = 10^{5\cdot \lg 2}
 \quad ({}\approx 10^{1\textrm{.}505}\,)\,\mbox{.}

Example 10

  1. Write \displaystyle 10^x using the base e.

    First, we write 10 as a power of e,
    \displaystyle 10 = e^{\ln 10}

    and then use the laws of exponents

    \displaystyle
     10^x = (e^{\ln 10})^x = e^{\,x \cdot \ln 10}
          \approx e^{2\textrm{.}3 x}\,\mbox{.}
    
  2. Write \displaystyle e^{\,a} using the base 10.

    The number \displaystyle e can be written as \displaystyle e=10^{\lg e} and therefore
    \displaystyle
     e^a = (10^{\lg e})^a
         = 10^{\,a \cdot \lg e}
         \approx 10^{\,0\textrm{.}434a}\,\mbox{.}
    


Exercises

Study advice

The basic and final tests

After you have read the text and worked through the exercises, you should do the basic and final tests to pass this section. You can find the link to the tests in your student lounge.


Keep in mind that:

You may need to spend much time studying logarithms.

Logarithms usually are dealt with summarily in high school. Therefore, many college students tend to encounter problems when it comes to calculations with logarithms.


Reviews

For those of you who want to deepen your studies or need more detailed explanations consider the following references:

Learn more about logarithms in English Wikipedia

Learn more about the number e in The MacTutor History of Mathematics archive


Useful web sites

Experiment with logarithms and powers

Play logarithm Memory

Help the frog to jump onto his water-lily leaf in the "log" game