Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

2.3 Exercises

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
(Translated links into English)
Current revision (23:42, 11 November 2008) (edit) (undo)
 
(8 intermediate revisions not shown.)
Line 2: Line 2:
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
| style="border-bottom:1px solid #000" width="5px" |  
| style="border-bottom:1px solid #000" width="5px" |  
-
{{Ej vald flik|[[2.3 Andragradsuttryck|Theory]]}}
+
{{Not selected tab|[[2.3 Quadratic expressions|Theory]]}}
-
{{Vald flik|[[2.3 Övningar|Exercises]]}}
+
{{Selected tab|[[2.3 Exercises|Exercises]]}}
| style="border-bottom:1px solid #000" width="100%"|  
| style="border-bottom:1px solid #000" width="100%"|  
|}
|}
Line 20: Line 20:
|width="25%" | <math>x^2+5x+3</math>
|width="25%" | <math>x^2+5x+3</math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Svar 2.3:1|Solution a|Lösning 2.3:1a|Solution b|Lösning 2.3:1b|Solution c|Lösning 2.3:1c|Solution d|Lösning 2.3:1d}}
+
</div>{{#NAVCONTENT:Answer|Answer 2.3:1|Solution a|Solution 2.3:1a|Solution b|Solution 2.3:1b|Solution c|Solution 2.3:1c|Solution d|Solution 2.3:1d}}
===Exercise 2.3:2===
===Exercise 2.3:2===
Line 40: Line 40:
|width="33%" | <math>3x^2-10x+8=0</math>
|width="33%" | <math>3x^2-10x+8=0</math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Svar 2.3:2|Solution a|Lösning 2.3:2a|Solution b|Lösning 2.3:2b|Solution c|Lösning 2.3:2c|Solution d|Lösning 2.3:2d|Solution e|Lösning 2.3:2e|Solution f|Lösning 2.3:2f}}
+
</div>{{#NAVCONTENT:Answer|Answer 2.3:2|Solution a|Solution 2.3:2a|Solution b|Solution 2.3:2b|Solution c|Solution 2.3:2c|Solution d|Solution 2.3:2d|Solution e|Solution 2.3:2e|Solution f|Solution 2.3:2f}}
===Exercise 2.3:3===
===Exercise 2.3:3===
Line 61: Line 61:
|width="50%" | <math>x(x^2-2x)+x(2-x)=0</math>
|width="50%" | <math>x(x^2-2x)+x(2-x)=0</math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Svar 2.3:3|Solution a|Lösning 2.3:3a|Solution b|Lösning 2.3:3b|Solution c|Lösning 2.3:3c|Solution d|Lösning 2.3:3d|Solution e|Lösning 2.3:3e|Solution f|Lösning 2.3:3f}}
+
</div>{{#NAVCONTENT:Answer|Answer 2.3:3|Solution a|Solution 2.3:3a|Solution b|Solution 2.3:3b|Solution c|Solution 2.3:3c|Solution d|Solution 2.3:3d|Solution e|Solution 2.3:3e|Solution f|Solution 2.3:3f}}
===Exercise 2.3:4===
===Exercise 2.3:4===
<div class="ovning">
<div class="ovning">
-
Determine a second-degree equation which has roots
+
Find a second-degree equation which has roots
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Line 76: Line 76:
|width="100" | <math>3\ </math> and <math>\ \sqrt{3}</math>
|width="100" | <math>3\ </math> and <math>\ \sqrt{3}</math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Svar 2.3:4|Solution a|Lösning 2.3:4a|Solution b|Lösning 2.3:4b|Solution c|Lösning 2.3:4c}}
+
</div>{{#NAVCONTENT:Answer|Answer 2.3:4|Solution a|Solution 2.3:4a|Solution b|Solution 2.3:4b|Solution c|Solution 2.3:4c}}
===Exercise 2.3:5===
===Exercise 2.3:5===
Line 82: Line 82:
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
-
|width="100%" | Determine a second-degree equation which only has <math>\,-7\,</math> as a root.
+
|width="100%" | Find a second-degree equation which only has <math>\,-7\,</math> as a root.
|-
|-
|b)
|b)
Line 90: Line 90:
|width="100" | The equation <math>\,x^2+4x+b=0\,</math> has one root at <math>\,x=1\,</math>. Determine the value of the constant <math>\,b\,</math>.
|width="100" | The equation <math>\,x^2+4x+b=0\,</math> has one root at <math>\,x=1\,</math>. Determine the value of the constant <math>\,b\,</math>.
|}
|}
-
</div>{{#NAVCONTENT:Answer|Svar 2.3:5|Solution a|Lösning 2.3:5a|Solution b|Lösning 2.3:5b|Solution c|Lösning 2.3:5c}}
+
</div>{{#NAVCONTENT:Answer|Answer 2.3:5|Solution a|Solution 2.3:5a|Solution b|Solution 2.3:5b|Solution c|Solution 2.3:5c}}
===Exercise 2.3:6===
===Exercise 2.3:6===
<div class="ovning">
<div class="ovning">
-
Determine the smallest value that the following polynomial can take
+
Determine the smallest value that the following polynomials can take
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Line 101: Line 101:
|width="33%" | <math>x^2-4x+2</math>
|width="33%" | <math>x^2-4x+2</math>
|c)
|c)
-
|width="33%" | <math>x^2-5x+7</math>
+
|width="33%" | <math>x^2-5x+7</math>.
|}
|}
-
</div>{{#NAVCONTENT:Answer|Svar 2.3:6|Solution a|Lösning 2.3:6a|Solution b|Lösning 2.3:6b|Solution c|Lösning 2.3:6c}}
+
</div>{{#NAVCONTENT:Answer|Answer 2.3:6|Solution a|Solution 2.3:6a|Solution b|Solution 2.3:6b|Solution c|Solution 2.3:6c}}
===Exercise 2.3:7===
===Exercise 2.3:7===
<div class="ovning">
<div class="ovning">
-
Determine the largest value that the following polynomials can take.
+
Determine the largest value that the following polynomials can take
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Line 115: Line 115:
|width="33%" | <math>-x^2+3x-4</math>
|width="33%" | <math>-x^2+3x-4</math>
|c)
|c)
-
|width="33%" | <math>x^2+x+1</math>
+
|width="33%" | <math>x^2+x+1</math>.
|}
|}
-
</div>{{#NAVCONTENT:Answer|Svar 2.3:7|Solution a|Lösning 2.3:7a|Solution b|Lösning 2.3:7b|Solution c|Lösning 2.3:7c}}
+
</div>{{#NAVCONTENT:Answer|Answer 2.3:7|Solution a|Solution 2.3:7a|Solution b|Solution 2.3:7b|Solution c|Solution 2.3:7c}}
===Exercise 2.3:8===
===Exercise 2.3:8===
Line 128: Line 128:
|width="33%" | <math>f(x)=(x-1)^2+2</math>
|width="33%" | <math>f(x)=(x-1)^2+2</math>
|c)
|c)
-
|width="33%" | <math>f(x)=x^2-6x+11</math>
+
|width="33%" | <math>f(x)=x^2-6x+11</math>.
|}
|}
-
</div>{{#NAVCONTENT:Answer|Svar 2.3:8|Solution a|Lösning 2.3:8a|Solution b|Lösning 2.3:8b|Solution c|Lösning 2.3:8c}}
+
</div>{{#NAVCONTENT:Answer|Answer 2.3:8|Solution a|Solution 2.3:8a|Solution b|Solution 2.3:8b|Solution c|Solution 2.3:8c}}
===Exercise 2.3:9===
===Exercise 2.3:9===
<div class="ovning">
<div class="ovning">
-
Find all the points where the x-axis and the following curves intersect.
+
Find all the points where the following curves intersect the <math>x</math>-axis.
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Line 143: Line 143:
|width="33%" | <math>y=3x^2-12x+9</math>
|width="33%" | <math>y=3x^2-12x+9</math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Svar 2.3:9|Solution a|Lösning 2.3:9a|Solution b|Lösning 2.3:9b|Solution c|Lösning 2.3:9c}}
+
</div>{{#NAVCONTENT:Answer|Answer 2.3:9|Solution a|Solution 2.3:9a|Solution b|Solution 2.3:9b|Solution c|Solution 2.3:9c}}
===Exercise 2.3:10===
===Exercise 2.3:10===
<div class="ovning">
<div class="ovning">
-
In the ''xy''-plane, draw in all the points whose coordinates <math>\,(x,y)\,</math> satisfy
+
In the ''xy''-plane, shade in the area whose coordinates <math>\,(x,y)\,</math> satisfy
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Line 160: Line 160:
|}
|}
-
</div>{{#NAVCONTENT:Answer|Svar 2.3:10|Solution a|Lösning 2.3:10a|Solution b|Lösning 2.3:10b|Solution c|Lösning 2.3:10c|Solution d|Lösning 2.3:10d}}
+
</div>{{#NAVCONTENT:Answer|Answer 2.3:10|Solution a|Solution 2.3:10a|Solution b|Solution 2.3:10b|Solution c|Solution 2.3:10c|Solution d|Solution 2.3:10d}}

Current revision

       Theory          Exercises      

Exercise 2.3:1

Complete the square of the expressions

a) x22x b) x2+2x1 c) 5+2xx2 d) x2+5x+3

Exercise 2.3:2

Solve the following second order equations by completing the square

a) x24x+3=0 b) y2+2y15=0 c) y2+3y+4=0
d) 4x228x+13=0 e) 5x2+2x3=0 f) 3x210x+8=0

Exercise 2.3:3

Solve the following equations directly

a) x(x+3)=0 b) (x3)(x+5)=0
c) 5(3x2)(x+8)=0 d) x(x+3)x(2x9)=0
e) (x+3)(x1)(x+3)(2x9)=0 f) x(x22x)+x(2x)=0

Exercise 2.3:4

Find a second-degree equation which has roots

a) 1  and  2
b) 1+3   and  13 
c) 3  and  3 

Exercise 2.3:5

a) Find a second-degree equation which only has 7 as a root.
b) Determine a value of x which makes the expression 4x228x+48 negative.
c) The equation x2+4x+b=0 has one root at x=1. Determine the value of the constant b.

Exercise 2.3:6

Determine the smallest value that the following polynomials can take

a) x22x+1 b) x24x+2 c) x25x+7.


Exercise 2.3:7

Determine the largest value that the following polynomials can take

a) 1x2 b) x2+3x4 c) x2+x+1.

Exercise 2.3:8

Sketch the graph of the following functions

a) f(x)=x2+1 b) f(x)=(x1)2+2 c) f(x)=x26x+11.

Exercise 2.3:9

Find all the points where the following curves intersect the x-axis.

a) y=x21 b) y=x25x+6 c) y=3x212x+9

Exercise 2.3:10

In the xy-plane, shade in the area whose coordinates (xy) satisfy

a) yx2  and  y1 b) y1x2  and  x2y3
c) 1xy2 d) x2yx