Processing Math: 33%
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

2.3 Exercises

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
m (Robot: Automated text replacement (-2.3 Andragradsuttryck +2.3 Quadratic expressions))
Current revision (23:42, 11 November 2008) (edit) (undo)
 
(3 intermediate revisions not shown.)
Line 2: Line 2:
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
| style="border-bottom:1px solid #000" width="5px" |  
| style="border-bottom:1px solid #000" width="5px" |  
-
{{Ej vald flik|[[2.3 Quadratic expressions|Theory]]}}
+
{{Not selected tab|[[2.3 Quadratic expressions|Theory]]}}
-
{{Vald flik|[[2.3 Exercises|Exercises]]}}
+
{{Selected tab|[[2.3 Exercises|Exercises]]}}
| style="border-bottom:1px solid #000" width="100%"|  
| style="border-bottom:1px solid #000" width="100%"|  
|}
|}
Line 65: Line 65:
===Exercise 2.3:4===
===Exercise 2.3:4===
<div class="ovning">
<div class="ovning">
-
Determine a second-degree equation which has roots
+
Find a second-degree equation which has roots
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Line 82: Line 82:
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
-
|width="100%" | Determine a second-degree equation which only has <math>\,-7\,</math> as a root.
+
|width="100%" | Find a second-degree equation which only has <math>\,-7\,</math> as a root.
|-
|-
|b)
|b)
Line 94: Line 94:
===Exercise 2.3:6===
===Exercise 2.3:6===
<div class="ovning">
<div class="ovning">
-
Determine the smallest value that the following polynomial can take
+
Determine the smallest value that the following polynomials can take
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Line 101: Line 101:
|width="33%" | <math>x^2-4x+2</math>
|width="33%" | <math>x^2-4x+2</math>
|c)
|c)
-
|width="33%" | <math>x^2-5x+7</math>
+
|width="33%" | <math>x^2-5x+7</math>.
|}
|}
</div>{{#NAVCONTENT:Answer|Answer 2.3:6|Solution a|Solution 2.3:6a|Solution b|Solution 2.3:6b|Solution c|Solution 2.3:6c}}
</div>{{#NAVCONTENT:Answer|Answer 2.3:6|Solution a|Solution 2.3:6a|Solution b|Solution 2.3:6b|Solution c|Solution 2.3:6c}}
Line 108: Line 108:
===Exercise 2.3:7===
===Exercise 2.3:7===
<div class="ovning">
<div class="ovning">
-
Determine the largest value that the following polynomials can take.
+
Determine the largest value that the following polynomials can take
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Line 115: Line 115:
|width="33%" | <math>-x^2+3x-4</math>
|width="33%" | <math>-x^2+3x-4</math>
|c)
|c)
-
|width="33%" | <math>x^2+x+1</math>
+
|width="33%" | <math>x^2+x+1</math>.
|}
|}
</div>{{#NAVCONTENT:Answer|Answer 2.3:7|Solution a|Solution 2.3:7a|Solution b|Solution 2.3:7b|Solution c|Solution 2.3:7c}}
</div>{{#NAVCONTENT:Answer|Answer 2.3:7|Solution a|Solution 2.3:7a|Solution b|Solution 2.3:7b|Solution c|Solution 2.3:7c}}
Line 128: Line 128:
|width="33%" | <math>f(x)=(x-1)^2+2</math>
|width="33%" | <math>f(x)=(x-1)^2+2</math>
|c)
|c)
-
|width="33%" | <math>f(x)=x^2-6x+11</math>
+
|width="33%" | <math>f(x)=x^2-6x+11</math>.
|}
|}
</div>{{#NAVCONTENT:Answer|Answer 2.3:8|Solution a|Solution 2.3:8a|Solution b|Solution 2.3:8b|Solution c|Solution 2.3:8c}}
</div>{{#NAVCONTENT:Answer|Answer 2.3:8|Solution a|Solution 2.3:8a|Solution b|Solution 2.3:8b|Solution c|Solution 2.3:8c}}
Line 134: Line 134:
===Exercise 2.3:9===
===Exercise 2.3:9===
<div class="ovning">
<div class="ovning">
-
Find all the points where the x-axis and the following curves intersect.
+
Find all the points where the following curves intersect the <math>x</math>-axis.
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Line 147: Line 147:
===Exercise 2.3:10===
===Exercise 2.3:10===
<div class="ovning">
<div class="ovning">
-
In the ''xy''-plane, draw in all the points whose coordinates <math>\,(x,y)\,</math> satisfy
+
In the ''xy''-plane, shade in the area whose coordinates <math>\,(x,y)\,</math> satisfy
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)

Current revision

       Theory          Exercises      

Exercise 2.3:1

Complete the square of the expressions

a) x22x b) x2+2x1 c) 5+2xx2 d) x2+5x+3

Exercise 2.3:2

Solve the following second order equations by completing the square

a) x24x+3=0 b) y2+2y15=0 c) y2+3y+4=0
d) 4x228x+13=0 e) 5x2+2x3=0 f) 3x210x+8=0

Exercise 2.3:3

Solve the following equations directly

a) x(x+3)=0 b) (x3)(x+5)=0
c) 5(3x2)(x+8)=0 d) x(x+3)x(2x9)=0
e) (x+3)(x1)(x+3)(2x9)=0 f) x(x22x)+x(2x)=0

Exercise 2.3:4

Find a second-degree equation which has roots

a) \displaystyle -1\ and \displaystyle \ 2
b) \displaystyle 1+\sqrt{3}\ and \displaystyle \ 1-\sqrt{3}
c) \displaystyle 3\ and \displaystyle \ \sqrt{3}

Exercise 2.3:5

a) Find a second-degree equation which only has \displaystyle \,-7\, as a root.
b) Determine a value of \displaystyle \,x\, which makes the expression \displaystyle \,4x^2-28x+48\, negative.
c) The equation \displaystyle \,x^2+4x+b=0\, has one root at \displaystyle \,x=1\,. Determine the value of the constant \displaystyle \,b\,.

Exercise 2.3:6

Determine the smallest value that the following polynomials can take

a) \displaystyle x^2-2x+1 b) \displaystyle x^2-4x+2 c) \displaystyle x^2-5x+7.


Exercise 2.3:7

Determine the largest value that the following polynomials can take

a) \displaystyle 1-x^2 b) \displaystyle -x^2+3x-4 c) \displaystyle x^2+x+1.

Exercise 2.3:8

Sketch the graph of the following functions

a) \displaystyle f(x)=x^2+1 b) \displaystyle f(x)=(x-1)^2+2 c) \displaystyle f(x)=x^2-6x+11.

Exercise 2.3:9

Find all the points where the following curves intersect the \displaystyle x-axis.

a) \displaystyle y=x^2-1 b) \displaystyle y=x^2-5x+6 c) \displaystyle y=3x^2-12x+9

Exercise 2.3:10

In the xy-plane, shade in the area whose coordinates \displaystyle \,(x,y)\, satisfy

a) \displaystyle y \geq x^2\ and \displaystyle \ y \leq 1 b) \displaystyle y \leq 1-x^2\ and \displaystyle \ x \geq 2y-3
c) \displaystyle 1 \geq x \geq y^2 d) \displaystyle x^2 \leq y \leq x