Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

2.3 Exercises

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
Current revision (23:42, 11 November 2008) (edit) (undo)
 
(24 intermediate revisions not shown.)
Line 2: Line 2:
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
| style="border-bottom:1px solid #000" width="5px" |  
| style="border-bottom:1px solid #000" width="5px" |  
-
{{Mall:Ej vald flik|[[2.3 Andragradsuttryck|Teori]]}}
+
{{Not selected tab|[[2.3 Quadratic expressions|Theory]]}}
-
{{Mall:Vald flik|[[2.3 Övningar|Övningar]]}}
+
{{Selected tab|[[2.3 Exercises|Exercises]]}}
| style="border-bottom:1px solid #000" width="100%"|  
| style="border-bottom:1px solid #000" width="100%"|  
|}
|}
-
===Övning 2.3:1===
+
===Exercise 2.3:1===
<div class="ovning">
<div class="ovning">
-
Kvadratkomplettera f&ouml;ljande uttryck
+
Complete the square of the expressions
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Line 20: Line 20:
|width="25%" | <math>x^2+5x+3</math>
|width="25%" | <math>x^2+5x+3</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 2.3:1|Lösning a|Lösning 2.3:1a|Lösning b|Lösning 2.3:1b|Lösning c|Lösning 2.3:1c|Lösning d|Lösning 2.3:1d}}
+
</div>{{#NAVCONTENT:Answer|Answer 2.3:1|Solution a|Solution 2.3:1a|Solution b|Solution 2.3:1b|Solution c|Solution 2.3:1c|Solution d|Solution 2.3:1d}}
-
===Övning 2.3:2===
+
===Exercise 2.3:2===
<div class="ovning">
<div class="ovning">
-
L&ouml;s f&ouml;ljande andragradsekvationer med kvadratkomplettering
+
Solve the following second order equations by completing the square
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Line 40: Line 40:
|width="33%" | <math>3x^2-10x+8=0</math>
|width="33%" | <math>3x^2-10x+8=0</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 2.3:2|Lösning a|Lösning 2.3:2a|Lösning b|Lösning 2.3:2b|Lösning c|Lösning 2.3:2c|Lösning d|Lösning 2.3:2d|Lösning e|Lösning 2.3:2e|Lösning f|Lösning 2.3:2f}}
+
</div>{{#NAVCONTENT:Answer|Answer 2.3:2|Solution a|Solution 2.3:2a|Solution b|Solution 2.3:2b|Solution c|Solution 2.3:2c|Solution d|Solution 2.3:2d|Solution e|Solution 2.3:2e|Solution f|Solution 2.3:2f}}
 +
 
 +
===Exercise 2.3:3===
 +
<div class="ovning">
 +
Solve the following equations directly
 +
{| width="100%" cellspacing="10px"
 +
|a)
 +
|width="50%" | <math>x(x+3)=0</math>
 +
|b)
 +
|width="50%" | <math>(x-3)(x+5)=0</math>
 +
|-
 +
|c)
 +
|width="50%" | <math>5(3x-2)(x+8)=0</math>
 +
|d)
 +
|width="50%" | <math>x(x+3)-x(2x-9)=0</math>
 +
|-
 +
|e)
 +
|width="50%" | <math>(x+3)(x-1)-(x+3)(2x-9)=0</math>
 +
|f)
 +
|width="50%" | <math>x(x^2-2x)+x(2-x)=0</math>
 +
|}
 +
</div>{{#NAVCONTENT:Answer|Answer 2.3:3|Solution a|Solution 2.3:3a|Solution b|Solution 2.3:3b|Solution c|Solution 2.3:3c|Solution d|Solution 2.3:3d|Solution e|Solution 2.3:3e|Solution f|Solution 2.3:3f}}
 +
 
 +
===Exercise 2.3:4===
 +
<div class="ovning">
 +
Find a second-degree equation which has roots
 +
{| width="100%" cellspacing="10px"
 +
|a)
 +
|width="100%" | <math>-1\ </math> and <math>\ 2</math>
 +
|-
 +
|b)
 +
|width="100" | <math>1+\sqrt{3}\ </math> and <math>\ 1-\sqrt{3}</math>
 +
|-
 +
|c)
 +
|width="100" | <math>3\ </math> and <math>\ \sqrt{3}</math>
 +
|}
 +
</div>{{#NAVCONTENT:Answer|Answer 2.3:4|Solution a|Solution 2.3:4a|Solution b|Solution 2.3:4b|Solution c|Solution 2.3:4c}}
 +
 
 +
===Exercise 2.3:5===
 +
<div class="ovning">
 +
{| width="100%" cellspacing="10px"
 +
|a)
 +
|width="100%" | Find a second-degree equation which only has <math>\,-7\,</math> as a root.
 +
|-
 +
|b)
 +
|width="100" | Determine a value of <math>\,x\,</math> which makes the expression <math>\,4x^2-28x+48\,</math> negative.
 +
|-
 +
|c)
 +
|width="100" | The equation <math>\,x^2+4x+b=0\,</math> has one root at <math>\,x=1\,</math>. Determine the value of the constant <math>\,b\,</math>.
 +
|}
 +
</div>{{#NAVCONTENT:Answer|Answer 2.3:5|Solution a|Solution 2.3:5a|Solution b|Solution 2.3:5b|Solution c|Solution 2.3:5c}}
 +
 
 +
===Exercise 2.3:6===
 +
<div class="ovning">
 +
Determine the smallest value that the following polynomials can take
 +
{| width="100%" cellspacing="10px"
 +
|a)
 +
|width="33%" | <math>x^2-2x+1</math>
 +
|b)
 +
|width="33%" | <math>x^2-4x+2</math>
 +
|c)
 +
|width="33%" | <math>x^2-5x+7</math>.
 +
|}
 +
</div>{{#NAVCONTENT:Answer|Answer 2.3:6|Solution a|Solution 2.3:6a|Solution b|Solution 2.3:6b|Solution c|Solution 2.3:6c}}
 +
 
 +
 
 +
===Exercise 2.3:7===
 +
<div class="ovning">
 +
Determine the largest value that the following polynomials can take
 +
{| width="100%" cellspacing="10px"
 +
|a)
 +
|width="33%" | <math>1-x^2</math>
 +
|b)
 +
|width="33%" | <math>-x^2+3x-4</math>
 +
|c)
 +
|width="33%" | <math>x^2+x+1</math>.
 +
|}
 +
</div>{{#NAVCONTENT:Answer|Answer 2.3:7|Solution a|Solution 2.3:7a|Solution b|Solution 2.3:7b|Solution c|Solution 2.3:7c}}
 +
 
 +
===Exercise 2.3:8===
 +
<div class="ovning">
 +
Sketch the graph of the following functions
 +
{| width="100%" cellspacing="10px"
 +
|a)
 +
|width="33%" | <math>f(x)=x^2+1</math>
 +
|b)
 +
|width="33%" | <math>f(x)=(x-1)^2+2</math>
 +
|c)
 +
|width="33%" | <math>f(x)=x^2-6x+11</math>.
 +
|}
 +
</div>{{#NAVCONTENT:Answer|Answer 2.3:8|Solution a|Solution 2.3:8a|Solution b|Solution 2.3:8b|Solution c|Solution 2.3:8c}}
 +
 
 +
===Exercise 2.3:9===
 +
<div class="ovning">
 +
Find all the points where the following curves intersect the <math>x</math>-axis.
 +
{| width="100%" cellspacing="10px"
 +
|a)
 +
|width="33%" | <math>y=x^2-1</math>
 +
|b)
 +
|width="33%" | <math>y=x^2-5x+6</math>
 +
|c)
 +
|width="33%" | <math>y=3x^2-12x+9</math>
 +
|}
 +
</div>{{#NAVCONTENT:Answer|Answer 2.3:9|Solution a|Solution 2.3:9a|Solution b|Solution 2.3:9b|Solution c|Solution 2.3:9c}}
 +
 
 +
===Exercise 2.3:10===
 +
<div class="ovning">
 +
In the ''xy''-plane, shade in the area whose coordinates <math>\,(x,y)\,</math> satisfy
 +
{| width="100%" cellspacing="10px"
 +
|a)
 +
|width="50%" | <math>y \geq x^2\ </math> and <math>\ y \leq 1 </math>
 +
|b)
 +
|width="50%" | <math>y \leq 1-x^2\ </math> and <math>\ x \geq 2y-3 </math>
 +
|-
 +
|c)
 +
|width="50%" | <math>1 \geq x \geq y^2</math>
 +
|d)
 +
|width="50%" | <math>x^2 \leq y \leq x </math>
 +
 
 +
|}
 +
</div>{{#NAVCONTENT:Answer|Answer 2.3:10|Solution a|Solution 2.3:10a|Solution b|Solution 2.3:10b|Solution c|Solution 2.3:10c|Solution d|Solution 2.3:10d}}

Current revision

       Theory          Exercises      

Exercise 2.3:1

Complete the square of the expressions

a) x22x b) x2+2x1 c) 5+2xx2 d) x2+5x+3

Exercise 2.3:2

Solve the following second order equations by completing the square

a) x24x+3=0 b) y2+2y15=0 c) y2+3y+4=0
d) 4x228x+13=0 e) 5x2+2x3=0 f) 3x210x+8=0

Exercise 2.3:3

Solve the following equations directly

a) x(x+3)=0 b) (x3)(x+5)=0
c) 5(3x2)(x+8)=0 d) x(x+3)x(2x9)=0
e) (x+3)(x1)(x+3)(2x9)=0 f) x(x22x)+x(2x)=0

Exercise 2.3:4

Find a second-degree equation which has roots

a) 1  and  2
b) 1+3   and  13 
c) 3  and  3 

Exercise 2.3:5

a) Find a second-degree equation which only has 7 as a root.
b) Determine a value of x which makes the expression 4x228x+48 negative.
c) The equation x2+4x+b=0 has one root at x=1. Determine the value of the constant b.

Exercise 2.3:6

Determine the smallest value that the following polynomials can take

a) x22x+1 b) x24x+2 c) x25x+7.


Exercise 2.3:7

Determine the largest value that the following polynomials can take

a) 1x2 b) x2+3x4 c) x2+x+1.

Exercise 2.3:8

Sketch the graph of the following functions

a) f(x)=x2+1 b) f(x)=(x1)2+2 c) f(x)=x26x+11.

Exercise 2.3:9

Find all the points where the following curves intersect the x-axis.

a) y=x21 b) y=x25x+6 c) y=3x212x+9

Exercise 2.3:10

In the xy-plane, shade in the area whose coordinates (xy) satisfy

a) yx2  and  y1 b) y1x2  and  x2y3
c) 1xy2 d) x2yx