Processing Math: 48%
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

3.3 Exercises

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
m (Robot: Automated text replacement (-{{Vald flik +{{Selected tab))
Line 10: Line 10:
===Exercise 3.3:1===
===Exercise 3.3:1===
<div class="ovning">
<div class="ovning">
-
What is <math>\,x\,</math> if
+
Solve the following equations for <math>x</math>.
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)

Revision as of 20:47, 28 October 2008

       Theory          Exercises      


Exercise 3.3:1

Solve the following equations for x.

a) 10x=1000 b) 10x=0.1
c) 110x=100 d) 110x=0.0001

Exercise 3.3:2

Calculate

a) lg0.1 b) lg10000 c) lg0.001 d) lg1
e) 10lg2 f) lg103 g) 10lg0.1 h) lg1102

Exercise 3.3:3

Calculate

a) log28 b) log931 c) log20.125
d) \displaystyle \log_3{\left(9\cdot3^{1/3}\right)} e) \displaystyle 2^{\log_{\scriptstyle2}{4}} f) \displaystyle \log_2{4}+\log_2{\displaystyle \frac{1}{16}}
g) \displaystyle \log_3{12}-\log_3{4} h) \displaystyle \log_a{\bigl(a^2\sqrt{a}\,\bigr)}

Exercise 3.3:4

Simplify

a) \displaystyle \lg{50}-\lg{5} b) \displaystyle \lg{23}+\lg{\displaystyle \frac{1}{23}} c) \displaystyle \lg{27^{1/3}}+\displaystyle \frac{\lg{3}}{2}+\lg{\displaystyle \frac{1}{9}}

Exercise 3.3:5

Simplify

a) \displaystyle \ln{e^3}+\ln{e^2} b) \displaystyle \ln{8}-\ln{4}-\ln{2} c) \displaystyle (\ln{1})\cdot e^2
d) \displaystyle \ln{e}-1 e) \displaystyle \ln{\displaystyle \frac{1}{e^2}} f) \displaystyle \left(e^{\ln{e}}\right)^2

Exercise 3.3:6

Use the calculator on the right to calculate the following to three decimal places. (The button LN signifies the natural logarithm with base e):

a) \displaystyle \log_3{4}
b) \displaystyle \lg{46}
c) \displaystyle \log_3{\log_2{(3^{118})}}