Tips och lösning till övning 3.14
SamverkanLinalgLIU
Tips 1
\displaystyle \boldsymbol{u} ligger i samma plan som \displaystyle \boldsymbol{v}_1 och \displaystyle \boldsymbol{v}_2 om \displaystyle \boldsymbol{u} är linjärt beroende av \displaystyle \boldsymbol{v}_1 och \displaystyle \boldsymbol{v}_2.
Tips 2
Sök lösningar till ekvationen \displaystyle \boldsymbol{u}=\lambda_1 \boldsymbol{v}_1 +\lambda_2 \boldsymbol{v}_2
Tips 3
Koordinaterna för \displaystyle \boldsymbol{u} blir just \displaystyle \lambda_1 och \displaystyle \lambda_2
Lösning
Vektorn \displaystyle \boldsymbol{u} ligger i samma plan som spänns upp av \displaystyle \boldsymbol{v}_1 och \displaystyle \boldsymbol{v}_2 om det finns \displaystyle \lambda_1 och \displaystyle \lambda_2 ej båda 0, så att
\boldsymbol{u}=\lambda_1 \boldsymbol{v}_1 +\lambda_2 \boldsymbol{v}_2\Leftrightarrow \left(\begin{array}{rr|r}2&1&2\\-1&1&-7\\3&2&1\end{array}\right)
\quad\Leftrightarrow\quad\left\{\begin{array}{rcr}\lambda_1&=&3\\\lambda_2&=&-4\end{array}\right.
Vi får alltså att \displaystyle \boldsymbol{u} är en linjärkombination av \displaystyle \boldsymbol{v}_1 och \displaystyle \boldsymbol{v}_2, ty
\boldsymbol{u}=3\boldsymbol{v}_1 -4\boldsymbol{v}_2.
Detta betyder att \displaystyle \boldsymbol{u} ligger i samma plan som spänns upp av \displaystyle \boldsymbol{v}_1 och \displaystyle \boldsymbol{v}_2.
Geometriskt betyder det att vi kan nå \displaystyle \boldsymbol{u} om
vi går 4 längdenheter i motsatt riktning för \displaystyle \boldsymbol{v}_1 och 3 längdenhet i samma riktning som \displaystyle \boldsymbol{v}_2.
Dessa steg av längdenheter längs respektive vektor har vi kallat för koordinater. Alltså har \displaystyle \boldsymbol{u} koordinaterna 3 och \displaystyle -4 i basen
\displaystyle \underline{\boldsymbol{v}}=\{\boldsymbol{v}_1,\boldsymbol{v}_2\} och vi skriver
\boldsymbol{u}=\underline{\boldsymbol{v}}\begin{pmatrix}3\\-4\end{pmatrix}.