Tips och lösning till U 5.4
SamverkanLinalgLIU
Tips 1
Du kan om du vill använda sats 4.4 pkt 3.
Tips 2
Om du inte använder sats 4.4 måste du först beräkna vektorprodukten inom parentes.
Tips 3
Som du ser av dina beräkningar så blir det olika svar i de två fallen. Gör en enkel skiss för att övertyga dej om varför det blir olika resultat.
Lösning
i)
( \boldsymbol{u} \times \boldsymbol{v} )\times \boldsymbol{w} = \left\{ \begin{pmatrix}2\\7\\4\end{pmatrix} \times \begin{pmatrix} 5 \\ 1\\ 3\end{pmatrix} \right\}\times \begin{pmatrix}1\\0\\6\end{pmatrix} = \begin{pmatrix} 17 \\ 14 \\ -33\end{pmatrix} \times \begin{pmatrix} 1\\0\\6\end{pmatrix} =\begin{pmatrix} 84 \\ -135 \\-14\end{pmatrix}.
ii)
\boldsymbol{u} \times ( \boldsymbol{v} \times \boldsymbol{w} )= \begin{pmatrix}2\\7\\4\end{pmatrix} \times \left\{ \begin{pmatrix} 5 \\ 1\\ 3\end{pmatrix} \times \begin{pmatrix}1\\0\\6\end{pmatrix} \right\} = \begin{pmatrix} 2 \\ 7 \\ 4\end{pmatrix} \times \begin{pmatrix} 6 \\ -27 \\ -1\end{pmatrix} =\begin{pmatrix} 101 \\ 26 \\-96\end{pmatrix}.