16.9 Linjära avbildningar och basbyte

SamverkanLinalgLIU

(Skillnad mellan versioner)
Hoppa till: navigering, sök
Rad 39: Rad 39:
Svar|Svar till övning 17.33|
Svar|Svar till övning 17.33|
Tips och lösning|Tips och lösning till övning 17.33}}
Tips och lösning|Tips och lösning till övning 17.33}}
 +
 +
 +
17.34. Avbildningen <math>F</math> har i basen <math>\underline{\boldsymbol{e}}</math> matrisen
 +
<center><math>A=\left(\begin{array}{rrr} 2& 0& 1\\ 1& -1& 0\\ 2& 2& 1\end{array}\right). </math></center>
 +
Bestäm <math>F</math>:s matris i basen <math>\underline{\boldsymbol{f}}</math> om
 +
<center><math>
 +
\boldsymbol{f}_1=\boldsymbol{e}_1+\boldsymbol{e}_2,\qquad
 +
\boldsymbol{f}_2=\boldsymbol{e}_2+\boldsymbol{e}_3,\qquad
 +
\boldsymbol{f}_3=\boldsymbol{e}_1.</math></center>
 +
 +
{{#NAVCONTENT:
 +
Svar|Svar till övning 17.34|
 +
Tips och lösning|Tips och lösning till övning 17.34}}

Versionen från 31 oktober 2008 kl. 21.45

Läs textavsnitt 16.9 Linjära avbildningar och basbyte

Övningar

17.31. Den linjära avbildningen \displaystyle F:{\bf R}^2\rightarrow{\bf R}^2 har i basen \displaystyle \underline{\boldsymbol{e}}=\{\boldsymbol{e}_1, \boldsymbol{e}_2\} har matrisen

\displaystyle A_{\boldsymbol{e}}=\frac{1}{2}\left(\begin{array}{rr} 1& 1\\ -1& 1\end{array}\right).

Ange \displaystyle F:s matris \displaystyle A_{\boldsymbol{f}} i basen

\displaystyle \boldsymbol{f}_1=\boldsymbol{e}_1+\boldsymbol{e}_2,\qquad \boldsymbol{f}_2=-\boldsymbol{e}_1+\boldsymbol{e}_2.

Ange också sambandet mellan koordinaterna i de båda baserna.



17.32 Antag att \displaystyle \underline{\boldsymbol{e}}=\{\boldsymbol{e}_1, \boldsymbol{e}_2,\boldsymbol{e}_3\} är en bas för \displaystyle {\bf R}^3 och låt den linjära avbildningen \displaystyle F:{\bf R}^3\rightarrow{\bf R}^3 definieras genom

\displaystyle F(\boldsymbol{e}_1)=\boldsymbol{e}_1+2\boldsymbol{e}_3,\qquad F(\boldsymbol{e}_2)=\boldsymbol{e}_1+3\boldsymbol{e}_2+\boldsymbol{e}_3,\qquad F(\boldsymbol{e}_3)=2\boldsymbol{e}_2+\boldsymbol{e}_3.

Bestäm matrisen för \displaystyle F med avseende på basen \displaystyle \underline{\boldsymbol{f}}=\{\boldsymbol{e}_1,\boldsymbol{e}_2,\boldsymbol{e}_3\}, där

\displaystyle \boldsymbol{f}_1=\boldsymbol{e}_1,\qquad\boldsymbol{f}_2=\boldsymbol{e}_1+\boldsymbol{e}_2,\qquad\boldsymbol{f}_3=\boldsymbol{e}_1+\boldsymbol{e}_2+\boldsymbol{e}_3.



17.33. Låt \displaystyle \underline{\boldsymbol{e}}=\{\boldsymbol{e}_1, \boldsymbol{e}_2,\boldsymbol{e}_3\} var en bas i rummet och \displaystyle F en linjär avbildning med matrisen

\displaystyle A=\left(\begin{array}{rrr} 2& 0& 1\\ 1& -1& 0\\ 2& 2& 1\end{array}\right).

i denna bas. Vad är matrisen för \displaystyle F i den bas \displaystyle \underline{\boldsymbol{f}} som ges av

\displaystyle

\boldsymbol{f}_1=\boldsymbol{e}_2-\boldsymbol{e}_3,\qquad \boldsymbol{f}_2=\boldsymbol{e}_1-\boldsymbol{e}_2+\boldsymbol{e}_3,\qquad

\boldsymbol{f}_3=-\boldsymbol{e}_1+\boldsymbol{e}_2.



17.34. Avbildningen \displaystyle F har i basen \displaystyle \underline{\boldsymbol{e}} matrisen

\displaystyle A=\left(\begin{array}{rrr} 2& 0& 1\\ 1& -1& 0\\ 2& 2& 1\end{array}\right).

Bestäm \displaystyle F:s matris i basen \displaystyle \underline{\boldsymbol{f}} om

\displaystyle

\boldsymbol{f}_1=\boldsymbol{e}_1+\boldsymbol{e}_2,\qquad \boldsymbol{f}_2=\boldsymbol{e}_2+\boldsymbol{e}_3,\qquad

\boldsymbol{f}_3=\boldsymbol{e}_1.